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1. Abstract
Ou recent work on earthquake nowcasting has been concerned with the development of 

methods to track the time dependent state of earthquake risk using earthquake catalog data and 
standard machine learning techniques. We show the current state of these nowcasting 
calculations as they pertain to California. We also present a new approach to earthquake 
nowcasting based on science transformers (GC Fox et al., Geohazards, 2022). As explained in the 
seminal paper by Vaswani et al. (NIPS, 2017), a transformer is a type of deep learning model that 
learns the context of a set of time series values by means of tracking the relationships in a 
sequence of data, such as the words in a sentence. Transformers extend deep learning in the 
adoption of a context-sensitive protocol "attention", which is used to tag important sequences of 
data, and to identify relationships between those tagged data. Pretrained transformers are the 
foundational technology that underpins the new AI models ChatGPT (Generative Pretrained 
Transformers) from openAI.com, and Bard, from Google.com. In our case, we hypothesize that a 
transformer might be able to learn the sequence of events leading up to a major earthquake. 
Typically, the data used to train the model is in the billions or larger, so these models, when 
applied to earthquake problems, need the size of data sets that only long numerical earthquake 
simulations can provide. In this research, we are developing the Earthquake Generative Pretrained 
Transformer model, "QuakeGPT", in a similar vein. For simulations, we are using simulation 
catalogs from a stochastic physics-informed earthquake simulation model "ERAS", similar to the 
more common ETAS models. ERAS has only 2 uncorrelated parameters that are easily retrieved 
from the observed catalog. In the future, physics-based models such as Virtual Quake model 
could be used as well. Observed data, which is the data to anticipate with nowcasting, is taken 
from the USGS online catalog for California. In this talk, we discuss 1) recent results from our 
earthquake nowcasting machine learning methods; and 2) the architecture of QuakeGPT together 
with first results.

In most "earthquake prediction" methods, an "anomaly" preceding a major earthquake is 
proposed, and a few case studies in which the "anomaly" is observed followed by a major 
earthquake are offered as evidence of success.  The problem with this approach, as pointed out 
over the years by Yan Kagan and Dave Jackson is that this procedure constitutes only 1 out of 4 
possible cases.  

Nomenclature for this case is "true positive", (TP).  The other possible cases are "true 
negative" (TN), where no anomaly is observed, and no earthquake occurs; "false positive” (FP), 
where an anomaly is observed and no earthquake occurs; and "false negative" (FN), where no 
anomaly is observed but an earthquake is observed. This idea is embedded in the Receiver 
Operating Characteristic method we use here, in which we use an Exponential Moving Average 
filter on the monthly seismicity time series.

2. Nowcasting with Machine Learning

Figure 2: Figure key for a nowcast movie for Southern California.  The various parts of the figure are 
as shown above.  The left panel is the nowcast curve.  The middle panel converts the nowcast curve 
into a probability for a M>6.75 earthquake to occur PPV_LogRTI_combined_image_0002147.png3 
years after the time indicated on the nowcast curve.  The traffic light indicator is the probability with 
the added condition allowing for earthquake clustering (foreshocks).  The right panel shows the 
spatial contours for earthquakes that are expected to occur within 3 years.  Small circles for this 
panel, which is for 1970, are the earthquakes that actually did occur within the following 3 years.

 

Figure 1. Workflow in which the seismicity is used to build the nowcast time curve as the 
optimized EMA, using the Receiver Operating Skill score as the loss function. 

Figure 3: Final frame of a southern California video.  Notice in particular the enhanced spatial 
probability extending from the epicentral area of the 2019 Ridgecrest earthquake in eastern California 
southwest towards the intersection of the Garlock and White Wolf faults with the San Andreas fault, 
the general area of the 8/9/2024 Lamont earthquake (circle).  Notice also that in the center chart, the 
chance of a large earthquake is about to increase rapidly.The complete movie can be found at the 
following link:  https://rundle.physics.ucdavis.edu/Movies/SouthernCalifornia.mp4.  A movie for the 
entire state of California can be found at:  https://rundle.physics.ucdavis.edu/Movies/California.mp4

4. Nowcasting with QuakeGPT
The nowcasting method has been used to produce movies detailing the current level of hazard in 

Southern California, due to the recent increase in small earthquake seismic activity. In the southern 
California video, the recent earthquakes in southern California are coincident with an enhanced 
spatial and temporal probability of a significant earthquake (M 6.75) in southern California. In the 
southern California area, the spatial probability density is in the vicinity of the Lamont earthquake, and 
generally lies along the Garlock fault, stretching from the epicentral region of the 2019 Ridgecrest 
earthquake, towards the intersection of the Garlock fault with the San Andreas (white box in Figure 3).

3. Nowcasting Movies

References  

We have extended the nowcast idea into an AI framework, “QuakeGPT” using the idea of science 
transformers, which were introduced by Vaswani et al. (2017).  Transformers combine deep learning 
neural networks with the idea of self-attention.  This more general framework allows for a model to 
predict a sequence of data, such as languages, patterns, or in our case, nowcasting time series of 
data.  

Figure 4:  (Left) To instantiate the model, we apply the workflow as shown above to train the model 
and then apply it to observed data. Data is fed into the model in the form of physics-informed 
stochastic earthquake simulations (ERAS model), to add to physics-based dynamical fault models 
(not considered in this current paper).  These long-time simulations are then used to pre-train the 
attention-based science transformer model.  The pretrained transformer model is then used to 
predict the validation data, followed by prediction of values of the unobserved future time series.  
Potential hazard alerting can be carried out using a traffic-light or other alerting system. (Right) The 
structure of the transformer is shown, including encoder layers, position encoding, feed-forward 
layers, global average pooling layer, and an output (decoder) layer.

Figure 5: Results obtained by training the transformer model on 2000 years of stochastic 
simulation data, followed by application to the observed nowcast curve as shown in Figures 1-3  
(Left).  Simulations were carried out using the ERAS model.  The observed nowcast curve can be 
seen overlaid by the green points, which represent predictions of the transformer model. In the 
cyan shaded region, the predictions use data from 16 previous points on the nowcast curve to 
predict the 17th following point.  In the magenta region, which is the prediction beyond the current 
observations, 16 previous predictions are fed back into the model to predict the next point. The 
brown shaded region indicates the standard error.  (Right) The transformer model is then  used to 
estimate the maximum magnitude earthquake that might occur in the future.  This magnitude is 
computed by identifying the earthquake magnitude from the training data that is found by 
comparing the magenta predicted nowcast with the training data.
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