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Background

• The Distributed Acoustic Sensing (DAS) is a new seismic observation 

method that utilizes repeated laser pulses and measures changes in the phase 
of backscattered light to measure the strain rate along with an optic fiber.


• Parameterized by neural networks, Implicit Neural Representation (INR) is a 
machine learning technique that represents data in a compact space. An INR 
model is defined and trained with data sampled from the original 
representation, and the data is then represented by the parameters within 
the INR model. In order to reconstruct the original representation, parameters 
like the row index of the matrix serve as the input to query the data from the 
INR compact representation. INR works as a lossy data compression and 
transmission method, where data can be reconstructed with loss.

OOI DAS

OOI DAS data was collected during the maintenance of the OOI Regional 
Cabled Array off central Oregon, November 1-5, 2021. The cables were 
connected to two Optasense QuantX DAS Interrogators, and 9.7/5.2 TB data 
raw data were recorded on the north and south cables, respectively.

For the south cable, there are totally 47500 channels recording at 200 Hz along 
the cable spacing by 2.07 meters. Assuming a double precision recording (8 
bytes), OOI DAS generates data at a rate of ~72 MB/s, which makes real-time 
transmission impossible.

Figure 3 shows a snippet of OOI DAS data from the south cable segment 
highlighted by a yellow rectangular in Figure 2. It shows data of three cable 
segments for 1 minute in its original representation.

Ongoing work

• Test the data fidelity of transient and high frequency (earthquake and whale) and 

ambient signal. 

• Test this method on urban DAS experiment.


Figure 1. OOI Regional Cabled Array

Discussion

• The signal from the Ocean Surface Gravity Wave[3] is well-recovered in lower-

frequency, and the high-frequency signal suffers more loss.

• SIREN works well in both shallow and intermediate water depth. But since 

SIREN favors a continuous representation both in space and time, getting worse 
reconstruction in deep water where continuities across channels are poor.


• Random FFN is computationally expensive than SIREN, but works better in 
reconstructing higher frequency signal, e.g., in deep water.

Method

In order to showcase this method, we chose a 15-minute recording from OOI 
DAS data. Since different segment of the cable have different dominant 
frequency and dispersion relation (Figure 3 and 4), we split the whole cable into 
three segments:  index 3000-15000, 15000-25000, and 25000-40000. We train 
three models independently for each cable segment.  


Figure 5 shows architectures of SIREN[1] and Random Fourier Feature 
Network[2], which are the INR models used in this research. We created the 
training dataset by selecting data points from the original representation data 
matrix. In this 15-minute data compression test, there are 8.6, 7.2 and 10.8 
million data points from shallow, intermediate and deep water segments, 
respectively. We define and train a SIREN model with 0.33 million 
parameters on a single A100 GPU for 30 epochs using Adam optimizer and 
MSE loss function.. The same dataset is used to train a random Fourier 
feature network with 0.39 million parameter. Instead of having a traditional 
train-validate-test process to avoid overfitting and underfitting, we train and 
overfit both models using one training dataset.


Figure 2. OOI DAS Cable Geometry
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Figure 3. Left column: One minute of OOI DAS data in its original 
representation. Data demeaned by channel. Middle: summed absolute 

amplitude of each channel. Right: data in frequency-wavenumber domain.
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Figure 4. Power spectrum 
density of two minutes 
OOI data after applying a 
cosine taper. Dominant 
frequency of all cable 
segments is around 0.6 Hz, 
and deep water has 
another peak around 0.19 
Hz. Data from shallow 
water has higher spectrum 
amplitude than 
intermediate and deep 
water cable.

	 The overfitted model compactly stores the data from their original 
representation. The INR model represents the data with trainable weights, 
getting ~3% compression ratio for this test. In order to reconstruct the 
complete but lossy data, the channel and time index serve as the input to 
query the data from the INR model. 
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Figure 5. Architecture of SIREN and Random Fourier Feature Network.
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