The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

Fabio Silva, Philip J. Maechling, and Christine A. Goulet

University of Southern California {fsilva, maechlin, cgoulet}@usc.edu

Broadband Platform 22.4 Overview

- Open-Source scientific software that can generate broadband (0-20Hz) ground motions
- Calculates ground motions at user specified sites for historical and scenario earthquakes
- Collaborative software development project involving:
 - SCEC Geoscientists
- Civil Engineers
- Graduate Students
- SCEC Research Computing
- Integrates complex scientific modules including:
- Rupture Generation - Site Effects Calculation
- Visualization - Seismogram Synthesis
- Provides ground motion models from seven different research groups
- Distributed as open-source package for Linux/GNU compilers and as a Docker Image
- Features simplified command-line interface for interactive use and scripting interface

Broadband Platform Features

Validation Simulations

- Calculate seismograms for a historical earthquake
- Use sites where recorded strong motion data is available

Scenario Simulations

- Calculate seismograms of a hypothetical earthquake
- User provides event description
- Earthquake location
- Magnitude and Mechanism
- Use sites specified by the user
- 1D Green's Functions Available
- California (5), Japan (2)

High-Frequen Synthesis

(optional)

Broadband Platform Workflow Showing Simulation Steps

SEISMOLOGICAT

SRL Special Issue Including a Broadband Platform

Spectra (Optional)

Review and Detailed Model Descriptions

Simulation Methodologies

- Stochastic Method: EXSIM (UWO)
- Broadband Using 1D Green's Functions: UCSB, Composite Source Model (CSM)
- Hybrid Green's Functions LF, Stochastic HF: Graves & Pitarka (GP), SDSU, SONG, Irikura Recipe Methods 1 and 2

Good Software Engineering Practices

- BSD-3 open-source license with support for method-specific open-source licenses
- Modular architecture with common data formats
- Supports code integration from multiple sources with minimal changes to original code
- Continuous Integration (CI) set up on GitHub
 - Unit tests confirm modules are working properly
 - End-to-end acceptance tests ensure user installation produces expected results
- Formal software releases with DOIs for software distribution and validation dataset
- Version control to track software changes and versions using GitHub
- Ticketing system to document and resolve issues, documentation available on wiki

Recent Broadband Platform Developments for 2019-2022

- Migrated Broadband Platform to Python 3.7+ and GNU 8.0+ compilers
- Added FAS validation for a better seismological interpretation of ground motions
- Implemented multi-segment rupture capabilities into most BBP simulation methods
- Updated GP low-frequency module, resulting in a 10x performance improvement
- Revised the UCSB source generator to assume a double-corner frequency source spectrum
- Included Central California, Central Italy, and Southern Walker Lane simulation regions
- Established common BBP codebase by merging CyberShake BBP changes into this release
- Added Hector Mine and Ridgecrest 2019 A/B/C validation events
- Used to simulate ground motions produced by large magnitude (M7.5+) ruptures
- Used in study of building response to strong ground motions
- Integrated RSQsim-generated rupture slip-time histories into BBP workflow
- Used to calculate large collection of ground motion parameters for M6 to M8 ruptures

Broadband Scenario Simulations

- Data products
 - Rupture slip time histories
 - Station and fault trace plots
 - Seismograms (velocity and acceleration)

Landers Earthquake (1992) Multi-Segment Slip Distribution

- Ridgecrest M7.1 July 5th 2019 Simulation (GP method)
- Use about 1,200 stations distributed uniformly in a grid
- Export PGA and PGV data into OpenSHA
- Create ground motion intensity maps

CISN ShakeMap - Instrumental Intensity PGA Map Using Simulated Data

Broadband Validation Simulations

Simulation methods validated using the following events:

- Northridge
- Chino Hills - Mineral
- Whittier Narrows
- Saguenay - Alum Rock - Riviere du Loup - Tottori
- Landers - North Palm Springs - Niigata
- Parkfield
- Loma Prieta
- San Simeon - Iwate - Hector Mine
- Chuetsu-Oki - L'Aquila - Ridgecrest A/B/C - La Habra

BBP Data products

- Rupture slip time histories
- Station and fault trace plots
- Seismograms (velocity and acceleration)

 - Arias Duration

- Comparison of recorded strong ground motions against calculated seismograms • Timeseries, PSA, and FAS

Goodness-of-Fit measurements

- PSA comparisons by period, distance, and location
- Anderson GoF (2004)
- Fourier Amplitude Spectra (FAS) module
- Smoothed Effective Amplitude Spectrum (SEAS)
- FAS GoF comparison against data
- RZZ2015 parameters
- Comparison of simulations against GMPEs
- NGA West 1 (AS08, BA08, CB08, CY08)
- NGA West 2 (ASK14, BSSA14, CB14, CY14)
- CENA Group 1 (PZT11, A0811E, S03SCVS)
- Combine data from multiple realizations
 - FAS GoF plots (frequency)
 - Ranking of PSA/FAS GoFs for all realizations

• PSA GoF plots (period, distance, location, Vs30)

- Mayhew-Olsen GoF calculates up to 12 GoF metrics

Comparison of Observed and Simulated Timeseries

PSA Comparison for a Single Station

Northridge Earthquake Bias GoF Map Plot Showing 38 Stations

FAS (above) and PSA (below) Validation Comparison

2019 M6.47 Ridgecrest A Earthquake Combined GOF Plot for Ridgecrest19A 64 Realizations - GP Method

The Broadband Platform software development is supported by the Southern California Earthquake Center (SCEC), which is funded by NSF Cooperative Agreement EAR-1600087 and USGS Cooperative Agreement G17AC00047. Additional support was provided by Pacific Gas and Electric.

BBP 22.4 available for download at https://github.com/SCECcode/bbp

