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INTRODUCTION RESULTS - DYNaMIC AND STATIC COULOMB STRESS CHANGES
The July 2019 M 7.1 T N < N (a) Dynamic, VERTICAL RECEIVER PLANE (b) Static, VERTICAL RECEIVER PLANE

5 Strike = 320° Strike = 330° Strike = 340° Strike = 320° | Strike = 330° | Strike = 340° : m Peak dynamic ACEFS are as large as several Mpa, while static

| : ACEFS are mostly of the order of a few hundreds of kPa.

» Peak dynamic ACFS decrease with decreasing depth of the
hypocenter, and a more northerly strike angle.

= Static ACFS are mostly positive at shallower hypocentral depth,
while negative values are obtained at greater depth.

Ridgecrest mainshock

was preceded by multiple
foreshocks including the

M 5 .4 event. Preliminary
models suggest dynamic
stress change due to the
foreshock of several MPa )
In this study, we aim to
investigate the physical
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1. Horizontal: put only the foreshock rupture plane | NIzt et * Peak dynamic ACFS at the mainshock hypocenter occurs around 1.4 — 1.8 seconds after the e — v — o i
] ] ) ) 1 Foreshock rupture plane i ) ) . Strike [°] Strike [°]
into the simulation. Stress tensors on every point ? Mainshock fault plane nucleation and increases with deeper depth and more westerly strike angle

. . Mainshock epicenter . . . s . . . . . .
on the domain are converted into normal and shear ok = Static ACFS show stronger negative values with deeper depth and more northerly strikes, Fig. 6. Predicted dynamic and static ACFS as a function of assumed mainshock
stress on the mainshock fault plane. \ TN 12 km consistent with the preliminary estimation!!l. hypocenter depth and strike angle.

2. Vertical: add the mainshock fault plane to the N * = Stress components resolved on the vertical and horizontal receiver planes are the same as » Peak dynamic ACFS at the mainshock hypocenter are as large as
snnplatmn. Normal anc.l sh.ear SHHERSS @1 the PN | I A R L expected. several MPa, but decrease with decreasing hypocenter depth and
mainshock fault plane is directly obtained from o || 8fkm 2 Strike = 320° Strike = 330° Strike = 340° the more northerly strike angle.
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| . Fig. 5. Evolution of the average ACFS as a function of time within a 0.5 km-radius circle centering at the
2. Two faults model 3. Check consistency mainshock hypocenter.
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