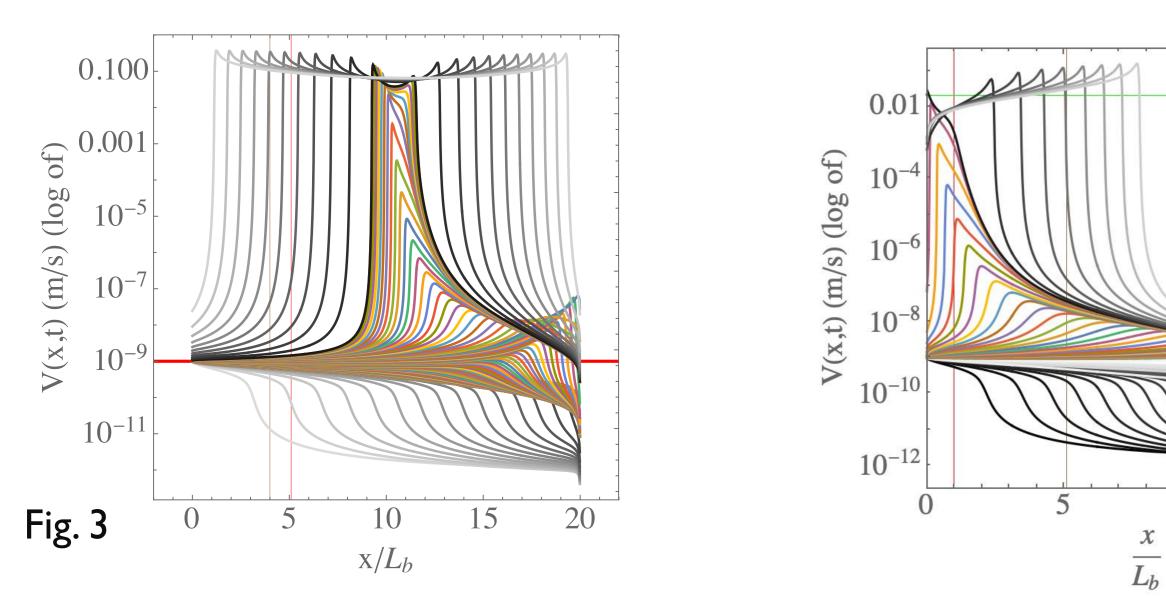
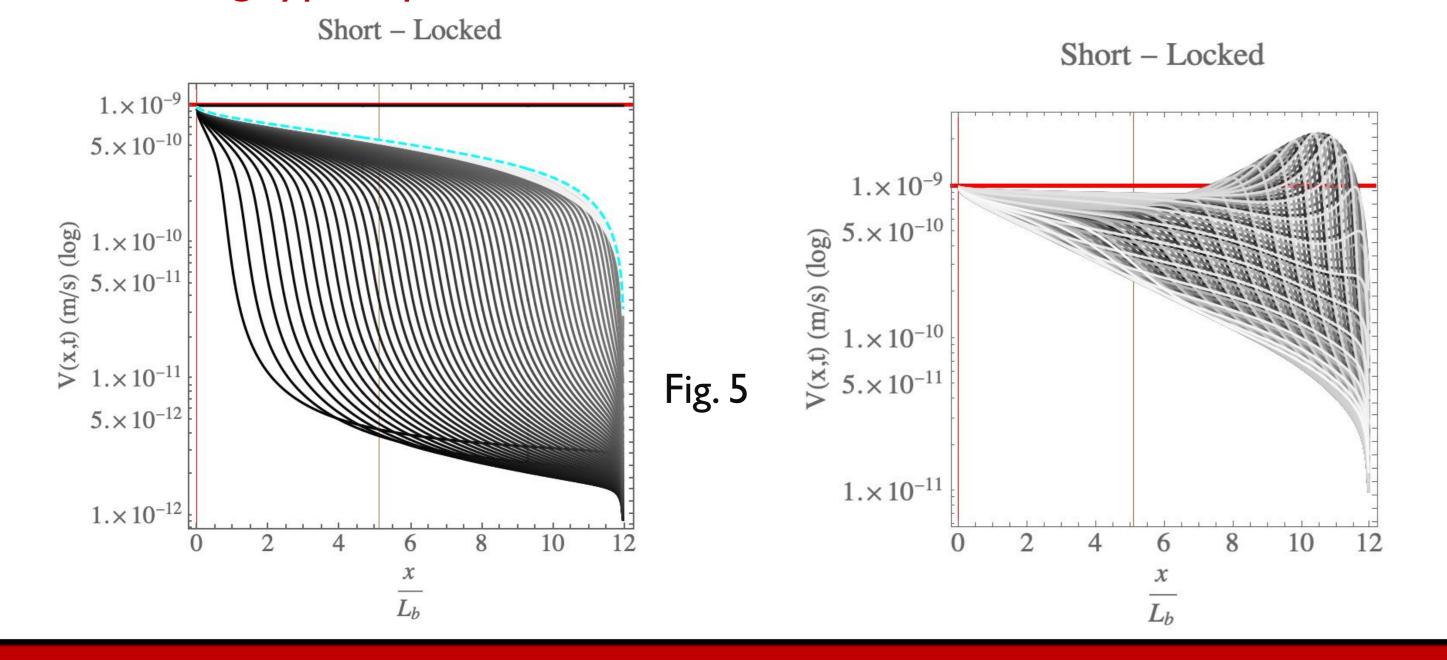


3a. Finite fault with the other end buried/locked



A strictly locked end has interesting consequences on dislocation-driven creep advance. In this case, the slow aseismic creep provokes instability only when the finite-fault size exceeds a cut-off size, Lc. Further, on such finite-faults of size larger than standard nucleation length-scales but lesser than the cut-off size, Lc, a propagating creep could fail to nucleate an instability, and instead, could continue to lock or exhibit a long sustained spatio-temporal type oscillation, breathing type evolution of slip rate.

3b. A breathing type slip-rate evolution



SCEC 2021, Annual Meeting. Aseismic slip on rate-weakening interfaces Sohom Ray¹ and Dmitry I. Garagash²

¹Earthquake Engineering, IIT Roorkee ²Civil and Resource Engineering, Dalhousie University

We highlight how slow aseismic slip travels long distances on rate-weakening interfaces. We considered model faults with sliding rate- and state-dependent interfacial shear strength. The slip is driven by a tectonic dislocation (accrued at a constant rate at one end) on a finite fault with the other end either locked or free. We also consider scenarios where slip is driven by dislocations imposed at both the ends or spatially localized external stress.

Shear stress and its rate on the fault

$$\tau(x,t) = \tau_b(x,t) + \tau_{el}[\delta(x,t),t] - \frac{\mu'}{2c_s}V(x,t)$$
$$\frac{\partial \tau}{\partial t} = \frac{\partial \tau_b}{\partial t} + \frac{\partial \tau_{el}}{\partial t} - \frac{\mu'}{2c_s}\frac{\partial V}{\partial t}$$

Medium's (elastic) response to slip

$$\tau_{el}[\delta(x,t),t] = \frac{\mu'}{2\pi} \int_{-L/2}^{L/2} \frac{\partial \delta(x',t)/\partial x'}{x'-x} dx'$$

Shear strength under constant normal stress = 0

$$\tau_s(x,t) = \sigma f(V,\Theta) \qquad \quad \frac{\partial \tau_s}{\partial t} = \sigma \frac{\partial f}{\partial t}$$

Friction Coefficient

$$f(V,\theta) = f \pm a \ln \left(\frac{V(x,t)}{V(x,t)} \right) \pm \Theta(x,t)$$

$$f(V,\theta) = f_o + a \ln\left(\frac{V(x,t)}{V_o}\right) + \Theta(x,t)$$

Steady state behavior

Fig. 2

Fig. 4

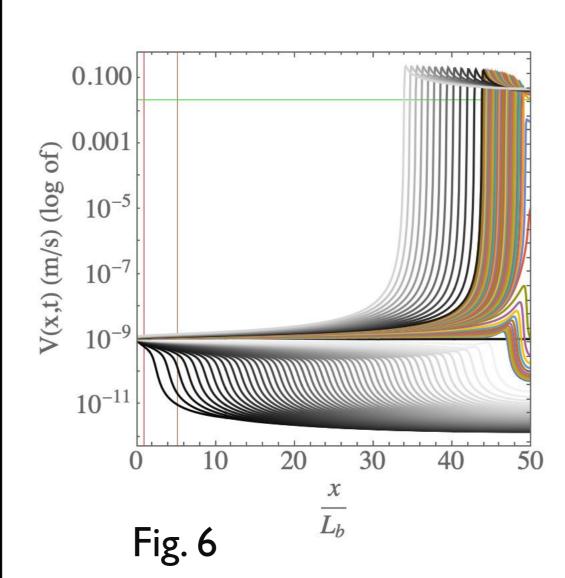
 $\Delta f_{in}/b$

$$f(V) = f_o + (a - b) \ln\left(\frac{V(x, t)}{V_o}\right)$$

Deviation from steady-state sliding

 $\Delta f(x,t) = f(V,\Theta) - f(V)$

4 Finite faults with the other end free

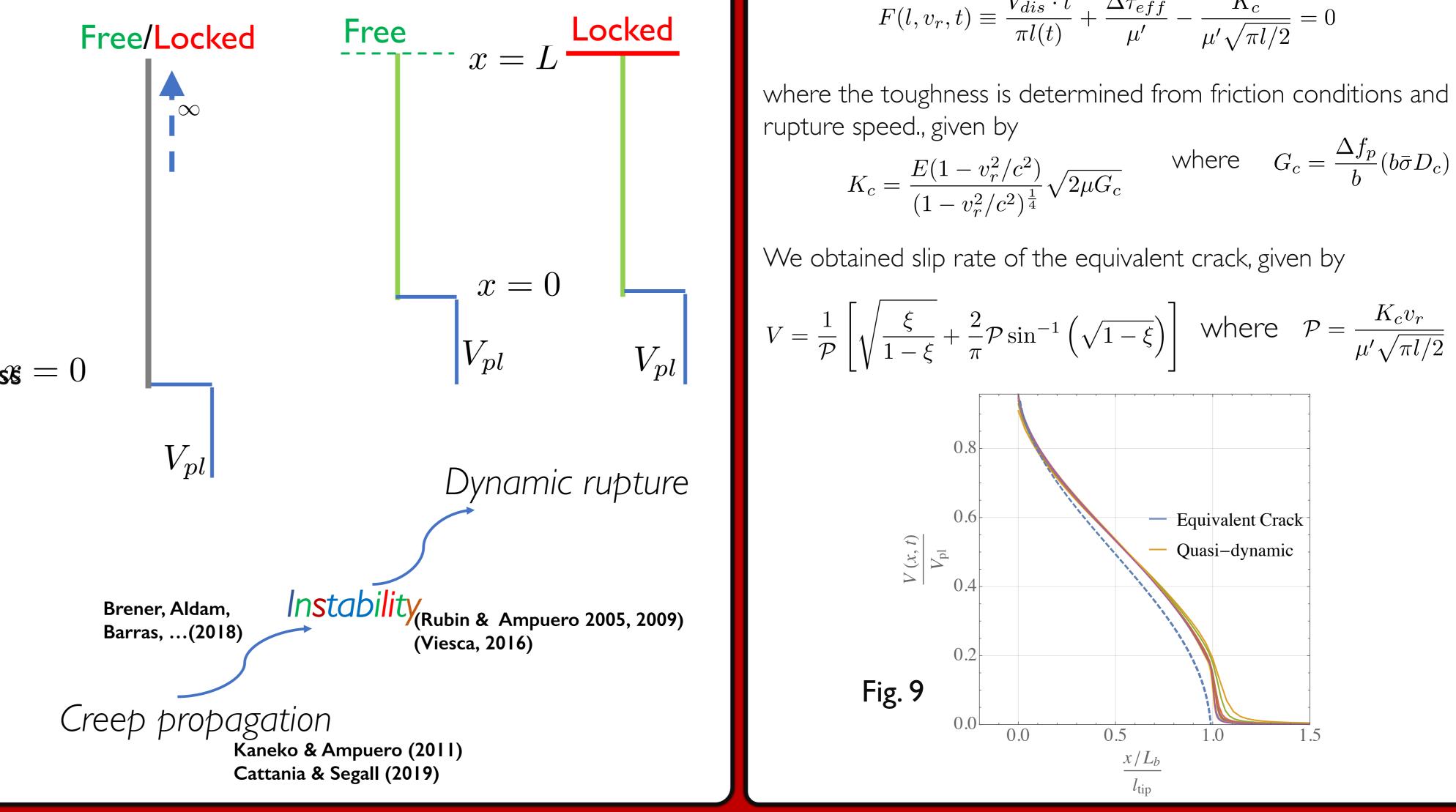


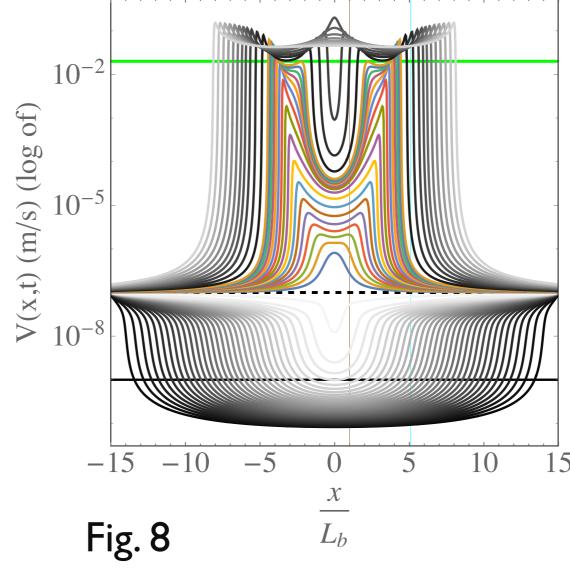
A finite fault driven by dislocations at both the ends (or a finite-fault with free-surface at the other end), transition to instability does not involve such breathing type oscillation of slip rate.

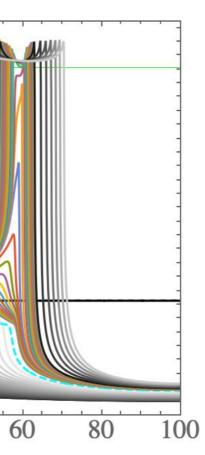
0.100 0.001 10^{-5} 10- 10^{-1} 20 40

Fig. 7

I. Introduction







Large faults with the other end free

propagation

Here we consider a long (semi-infinite) fault where the slip is driven by an imposed dislocation at the one end. We look for the elastodynamic stress transfers in a coordinate $\zeta = v_r t - x$ that moves with the tip of the rupturing front.

 $\tau[\delta(\zeta)] =$

$$K_c$$

$$V = \frac{1}{\mathcal{P}} \left[\sqrt{\right.} \right]$$

7. Notations effective normal stress: σ

Away from steady-state sliding: Δf

8. References

- I. Rubin and Ampuero (JGR, 2009)
- 2. Kaneko and Ampuero (JGR, 2011) 3. Brener et. al. (2018) 4. Bar-Sinai et. al. (2019) 6. Garagash (PTRS, 2020)
- 5. Cattania and Segall (JGR, 2019)

6. Equivalent crack model for the creep

$$\tau_{ex} + \frac{\mu'\sqrt{1 - v_r^2/c^2}}{2\pi} \int_0^\infty \frac{\delta'(\tilde{\zeta})}{\tilde{\zeta} - \zeta} d\tilde{\zeta} \qquad \text{when}$$

 v_r is the rupture speed.

Following Garagash (Phil. Trans. Roy. Soc., 2020), we consider an equivalent crack that slips under imposed dislocation and an effective stress drop, Δau_{eff} , from background stress to steady-state sliding at an effective slip rate. When slip occurs, we have

$$F(l, v_r, t) \equiv \frac{V_{dis} \cdot t}{\pi l(t)} + \frac{\Delta \tau_{eff}}{\mu'} - \frac{K_c}{\mu' \sqrt{\pi l/2}} = 0$$

$$=\frac{E(1-v_{r}^{2}/c^{2})}{(1-v_{r}^{2}/c^{2})^{\frac{1}{4}}}\sqrt{2\mu G_{c}} \qquad \text{where} \quad G_{c}=\frac{\Delta f_{p}}{b}(b\bar{\sigma}D_{c})$$

- shear traction: τ
- shear strength: τ_s
- friction coefficient: f
- State Variable: Θ Direct effect: a
- Evolution effect: b
- slip rate: V
- rupture speed: v_r
- wave speed: c
- coordinate: ζ, x

Fracture energy: G_c Fracture toughness: K_c Stress Intensity Factor: KRupture length: lPeak Friction departure: Δf_p Friction evolution slip scale: D_c Elliptic Integral IInd kind: E