Verification of the Broadband CyberShake Platform

Scott Callaghan1, Christine A. Goulet1, Fabio Silva1, Philip J. Maechling1, Robert W. Graves2, Ossian O’Reilly3, Kim B. Olsen4, Te-Yang Yeh4, Albert Kottke5, Yehuda Ben-Zion1

(1) University of Southern California: {scottcal, cgoulet, fsilva, maechlin, benzion}@usc.edu; (2) U. S. Geological Survey: rgraves@usgs.gov; (3) ossian.oreilly@gmail.com; (4) San Diego State University: kbolsen@mail.sdsu.edu, tyyeh316@gmail.com (5) Pacific Gas and Electric: ARKK@pge.com

We have performed verification between Broadband CyberShake and the SCEC Broadband Platform.

Verification Workflow

To perform verification between Broadband CyberShake and the SCEC Broadband Platform (BBP), we run both platforms on equivalent simulations and compare the outputs. Note that CyberShake does not produce a vertical component, so all comparisons were done with horizontal components.

Initial Testing

Results from the BBP and CyberShake are not expected to be identical, as they use different low-frequency codes with different internal assumptions. However, we should be able to explain the observed differences that remain once the problem is defined identically on both platforms. To this effect, we performed an extensive series of tests to isolate the source of differences, a few of which are described below.

Comparison of seismograms calculated for a point source in a halfspace.

The slight time offset is due to small differences between CyberShake (red) and the BBP (black) in the relative locations of velocity and stress in the finite grid.

We modified the BBP 1D velocity model to include transitional layers so that the finite difference code with discrete grid points uses an equivalent model to the BBP FK code.

For typical CyberShake runs, we use a grid spacing of 100m. We ran a test using 33.333m grid spacing and compared CyberShake 100m (blue), CyberShake 33m (red) and the BBP FK (black). This confirmed that the finite difference and FK results converge as the grid spacing is refined.

Verification Using the Northridge Event Simulation

We performed 1D simulations using the Northridge event included with the BBP. The Northridge fault trace is roughly outlined in yellow, along with the 10 stations at which we compute simulations on both platforms (these stations correspond to the location of recordings from the 1994 event). No recordings are used in our verification tests.