Tectonic inheritance during plate boundary evolution in southern California constrained from seismic anisotropy
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Abstract

The style of convective force transmission to plates and strain-localization within and
underneath plate boundaries remain debated. To address some of the related issues, we
analyze a range of deformation indicators in southern California from the surface to the
asthenosphere. Present-day surface strain rates can be inferred from geodesy. At
seismogenic crustal depths, stress can be inferred from focal mechanisms and splitting of
shear waves from local earthquakes via crack-dependent seismic velocities. At greater
depths, constraints on rock fabrics are obtained from receiver function anisotropy, Pn and P
tomography, surface wave tomography, and splitting of SKS and other teleseismic core
phases. We construct a synthesis of deformation-related observations focusing on
quantitative comparisons of deformation style. We find consistency with roughly N-S
compression and E-W extension near the surface and in the asthenospheric mantle.
However, all lithospheric anisotropy indicators show deviations from this pattern. Pn fast
axes and dipping foliations from receiver functions are fault-parallel with no localization to
fault traces and match post-Farallon block rotations in the Western Transverse Ranges. Local
shear wave splitting orientations deviate from the stress orientations inferred from focal
mechanisms in significant portions of the area. We interpret these observations as an
indication that lithospheric fabric, developed during Farallon subduction and subsequent
extension, has not been completely reset by present-day transform motion and may
influence the current deformation behavior. This provides a new perspective on the
timescales of deformation memory and lithosphere-asthenosphere interactions.
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Figure 3. (a) Fast d delay time of SKS spli lation of Becker et al, 2012, up-

dated as of 2020) and Rayleigh wave upper mantle fa

and percent anisotropy (orange bars; Lin et al.

2011). Elevation shading and fau

are shown for orientation, with faults in green for surf
red for blind faults from the SCEC CFM5:3 as in Fig. 1. (b) Signed angular difference comparison between

the two orientation sets (color coding of bars in angle sign definition as in (a); amplitude infos

not used in this case). Inset shows histogram of the angular differences, with mean(median) and standard

deviation indicated; N is number of measurements pairs per bin, No total number of pairs.
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Figure 8. Comparison of six data sets in a common reference system. The reference oricntation is aver-

agge SAT strike rotated 45 counterclockwise o match approximate SKS and surface extension orientations.
Note that the background color scale used to represent axis misorientation is different from that used in

Figure 5. (2 In blue, fast propagation axes and % anisotropy from Py tomography (Buchler & Shearer,

AP & 5 Tigs. 3-7; purple/blue shades now show alignment, and we do not distinguish between CW and CCW ro-
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(¢) Receiver function strikes as in Fig. 6. (d) P, fast axis as in Fig. 5. (¢) Mantle surface wave fast axis as in
,i‘ Ji, Lol ,,i‘ R ocrsastike Tig. 3. (d) SKS fast axes as in Fig. 3.

2017), compared to SAF strike averaged outside of the Big Bend (green bars). (b) Signed angular differ-
ence of the quantities in (a), description as for Fig. 3b. (c) P as in (a), but here compared to Farallon
convergence-perpendicular strike including subsequent block rotations from McQuarrie and Wernicke
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Figure 9.
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Overview of results
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The top right triangle has as diamonds the median deviation, with the diamond’s size scaled with the
inverse of the standard deviation and the diamond centered on the median. The lower left has the sam:
coloring, but the square size scales with the area of coverage out of the whole study area. See Fig 4 for

abbreviated representation of an extended comparison set.
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Conclusions

We compare orientations of stress- and deformation-associated observables such as surface deformation,
stress state inverted from focal mechanisms, local event and teleseismic shear wave splitting, receiver
function inferred azimuthally varying conversions, Pn and local/teleseismic P tomography, and surface
wave azimuthal anisotropy, in addition to geological information such as fault strike and block rotations
since Farallon subduction. The deformation indicators separate into three classes, with a near-surface
match between geodesy and focal mechanisms and some local event shear wave splits, a lithospheric
depth range comprising receiver functions, Pn, and local event splitting in other areas, and an
asthenospheric component detected by mantle surface waves and SKS splitting that is driven by mantle
circulation and can be speculated to transmit through the lithosphere to drive stress at the surface.
Notably, lithospheric rock fabric and anisotropy do not appear to be reset to reflect present-day
deformation and instead appear to persist since the time of accretion and intrusion during long-lived
subduction. Fabric from the upper crust through the lithospheric mantle appears to have been preserved
and rotated along with surface block rotations through temporal changes in deformation regimes.
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