Predicted Ductile Rheology of Textured and Non-Textured Rocks in Southern California

Laurent G.J. Montesi¹; Greg Hirth²; Michael E. Oskin³

¹University of Maryland, ²Brown University, ³B³University of California Davis

Rheology from endmembers

Each mineral is associated with a flow law: $\sigma = B\dot{\varepsilon}^{\frac{1}{n}} \exp\left(\frac{Q+PV}{nRT}\right) f_w^{-\frac{p}{n}}$

- Assumes dislocation creep: no grain size dependence (yet)
- Assumes water saturation: $f_w = 5.521 \times 10^9 \exp\left(\frac{-31,800 + 10.09 \times 10^{-6} P}{PT}\right)$
- Because there is no analytical solution for $\sigma(\dot{\varepsilon})$ (but there is one for $\dot{\varepsilon}(\sigma)$ in the case of a sheared rock, we impose stress, not strain rate.
- Present results in term of effective viscosity: $\eta = \sigma/2\dot{\varepsilon}$

For non textured rocks (including the initial CRM release)

Follow MPGe mixing relation of Huet et al., (2014):

$$\eta_{b} = \frac{1}{2} \overline{B}^{\overline{n}} \sigma^{1-\overline{n}} \exp\left(\frac{\overline{Q} + P\overline{V}}{RT}\right) f_{w}^{-\overline{p}} \quad \bullet \quad \overline{n} = \frac{\sum_{i} \phi_{i} a_{i} n_{i}}{\sum_{i} \phi_{i} a_{i}} \\ \bullet \quad \overline{Q} = \frac{\sum_{i} \phi_{i} a_{i} Q}{\sum_{i} \phi_{i} a_{i}} \\ \bullet \quad \overline{V} = \frac{\sum_{i} \phi_{i} a_{i} V_{i}}{\sum_{i} \phi_{i} a_{i}} \\ \bullet \quad \overline{n} = \frac{\sum_{i} \phi_{i} a_{i} p_{i}}{\sum_{i} \phi_{i} a_{i}}$$

For shear zone rocks (fabric-parallel strain)

Linear mixing assuming uniform stress σ

•
$$\eta_S = \frac{\sigma}{2\sum \left(\phi_i \left(\frac{\sigma}{B_i}\right)^{n_i} \exp\left(-\frac{Q_i + PV_i}{RT}\right) f_w^{p_i}\right)}$$

Proposed simplifying assumption based on the weakest mineral:

Follow the viscosity of the weakest mineral

$$\eta_m = \min_{i} \frac{1}{2} B_i^{n_i} \sigma^{1-n_i} \exp\left(\frac{Q_i + PV_i}{RT}\right) f_w^{p_i}$$

All minerals rigid except for the weakest

$$\eta_r = \frac{1}{\phi_i} \min_i \frac{1}{2} B_i^{n_i} \sigma^{1-n_i} \exp\left(\frac{Q_i + PV_i}{RT}\right) f_w^{p_i}$$

• The limits to the conditions where one mineral or another dominate can be determined analytically by solving for $\eta_{i_1} = \eta_{i_2}$

Here: Evaluate for which rocks types the strength of the weakest mineral is an acceptable approximate.

Table 1: flow law parameters for each constituent mineral

	n	р	Q [J/mol]	V [m]	B [Pa.s ^{1/n}]	Reference
Quartz	4	1	13500		1.1941×10^{10}	Hirth et al., (2001)
Feldspar	3	1	345000	38×10^{-6}	5.1951×10^7	Rybacki and Dresen (2006)
Biotite	18		51000		2.7013×10^{7}	Kronenberg et al. (1990)
Pyroxene	5.5		534000		4.2398×10^5	Dimanov and Dresen (2005)
Amphibole	3.7		244000		7.0505×10^6	Hacker and Christie (1990)
Olivine	3.5	1	520000	22×10^{-6}	8.3362×10^6	Hirth and Kohlstedt (2003)

Shear zone strength and weakening

Take ratio of viscosity between shear zones mixing rheology and the viscosity of the weakest mineral

- Present systematic error associated with the weakest mineral approximation
- Compared to viscosity contrast between non-textured and shear zone rock
- Shear stress should be identical inside and outside the shear zone

Case #1: Biotite is present and stress is high (>~10 MPa)

- Biotite is the weakest mineral. Its essentially plastic behavior controls stress
- The sheared rock much weaker than the non-textured rock
- Viscosity is unrealistic for stress higher than ~40 MPa

Case #2: Felsic rock with biotite, low stress (<~10 MPa)

- Quartz is the weakest mineral if T<~800°C (otherwise it's feldspar)
- The sheared rock is significantly weaker than the bulk rock only at the lowest temperature; its viscosity is ~ 6 times that of pure quartz

Cases 1 and 2 illustrated with the strength of a granodiorite composition (left), the ratio of shear viscosity ot that of the weakest mineral (center) and the ratio of shear zone to bulk rock viscosity (right)

Case #3: Felsic rock without biotite

- Quartz is the weakest mineral if T<~800°C (otherwise it's feldspar)
- The sheared rock is not significant weaker than the bulk rock

As above but for the "sediment Colorado" lithology illustrating Case #3. Note that phase stability is no considered

Case #3: Mafic rock

- Feldspar is the weakest mineral.
- The viscosity of the sheared rocks is ~5 times that of pure feldspar
- The sheared rock is weaker than the non-textured rock at low stress and/or low temperature

Each block of the Geological Framework is associated with a sequence of rock types for which we calculate a flow with and without fabric.

Importance for the CRM

Resources

The initial release of the GFM and CRM is available at http://www.scec.org/research/crm and http://www.doi.org/10.5281/zenodo.4579626

This release contains a complete description of the calculation of bulk rheology from end—member mineral flow laws as well as a complete reference list.