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Summary

Three-dimensional (3-D) deformation field is essential in studying crustal 

deformation processes and natural hazards. We have recently developed an 

algorithm to integrate spatially limited GNSS and dimensionally limited InSAR

data for a 3-D crustal deformation field at the Earth’s surface (Shen and Liu, 2020). 

In the algorithm discrete GNSS data points are interpolated to a 3-D continuous 

velocity field, which is then combined with the InSAR line-of-sight (LOS) velocity 

data pixel by pixel using a least-squares method. Our method has the following 

advantages: 1) The GNSS data points are optimally interpolated through balancing 

a trade-off between spatial resolution and solution stability. 2) Realistic 

uncertainties for the interpolated GNSS velocity field are estimated using a newly 

developed algorithm and used as weights for GNSS data in GNSS-InSAR

combination. 3) Realistic uncertainties for the InSAR LOS rate data are estimated 

and used as weights for InSAR data in the combination. 4) The algorithm has the 

flexibility in integrating InSAR data from multiple SAR sensors with different 

viewing geometries. 5) The ramps and/or offsets of the InSAR data are globally 

estimated for all the images to minimize data misfit, particularly at regions where 

the data overlaps. We have made initial efforts in applying this method to real data 

to restore 3-D velocity field in southern California. The GNSS velocity data we use 

is from the MEaSUREs project (http://geoapp03.ucsd.edu/gridsphere/gridsphere). 

We consider the InSAR data from different satellites such as the ERS-1,2 and 

Envisat from the 1990s-2000s, and more recent Sentinel-1A and 1B and L-band 

ALOS-2 ScanSAR data since 2015. Both Sentinel-1 and ALOS-2 data provide 

broad spatial coverage with good temporal coherence. The deformation field we 

obtained so far reveals water withdrawal induced subsidence and drought caused 

uplift at various regions in southern California. 

Figure 1. Study area in southern California. Black curves are active faults, 

blue squares are GNSS sites whose data are used in this study. The green 

frames denote the imprints of 8 InSAR tracks whose data are used in this 

study. 

Figure 3. GNSS velocities and interpolation result. (a) White vectors are GNSS horizontal velocities in 

SNARF reference frame that are used in the combination with InSAR data. The background colors 

denote the amplitudes of interpolated horizontal velocity field. (b) Filled circles are GNSS vertical 

observations, and the background colors denote the interpolated vertical velocity field. (c) and (d) are 

uncertainties of east and up components of interpolated GNSS velocities, respectively. 

Figure 2. Histograms of GNSS 

velocity uncertainties. Blue curves 

are amplitudes of residual 

velocities from bootstrapping 

analysis, and red curves are 

uncertainties from GNSS velocity 

interpolation estimates. 

1. GNSS data interpolation and uncertainty estimation

In our algorithm of GNSS and InSAR data integration, point-based discrete GNSS velocities are 

first interpolated to produce continuous 3-D vector map at chosen grids. The interpolation is 

based on an algorithm of Shen et al. (2015), which takes into account GNSS network density and 

configuration for data weighting. A Gaussian distance weighting function (wd) and a Voronoi cell 

spatial weighting function (wv) are used in the interpolation, which allow greater weighting for 

sites located closer to the chosen grid and/or occupying greater Voronoi cell areal space. The 

amount of weighting and degree of smoothing can be spatially variable and optimally determined 

based on in situ data strength, and are realized by assigning a common weighting parameter W 

for all the grid points: 𝑊 =෌
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2 is the Gaussian distance weighting function, ri is 

the distance between the i-th GNSS site and the grid point, and σk is the smoothing distance 

constant. At each grid point σk is adjusted to meet W, which is a predetermined constant (W=3 for 

this study). 

To combine the interpolated GNSS data with InSAR data, we need adequate estimates of GNSS 

velocity uncertainties from the interpolation, to be used as data weighting in the combination. 

Formal GNSS velocity uncertainties deduced in the interpolation process, however, are not fit for 

the job because they are largely determined by the amount of a priori information (i.e. the degree 

of smoothing) imposed during interpolation, which varies from grid to grid. It usually leads to 

apparently unreasonable results, that regions with sparser data points would have smaller 

uncertainty than regions with denser data points, and vice versa. To overcome the problem, we 

propagate errors from GNSS data input to interpolation output using the same interpolation 

functional form and least-square procedure as before, but keep σk as a constant σ0 for all the 

region. In this way  the same kind of a priori assignment algorithm will be applied for all the 

grids, and the only difference reflected in the output uncertainty estimates will be the in situ data 

strength. Parameter σ0 is then determined through a statistical bootstrapping procedure, that 

velocity interpolation is performed at each GNSS site without utilization of the velocity datum of 

the site, and a differential velocity is evaluated for the site between the datum of the site and the 

interpolation value. We perform the bootstrapping analysis iteratively for all the sites with 

different assumptions of σ0, and the optimal value of σ0 (=17 km) is determined when the median 

of the amplitudes of 3-D residual velocities at the GNSS sites is equal to the median of the 

uncertainties from GNSS site velocity interpolation. Fig. 2 plots histograms of the interpolated 

GNSS site velocity uncertainties and the bootstrapping velocity residuals with the optimal value 

of σ0 incorporated, and the result shows an overall consistency of the two series. 

2. InSAR data analysis, LOS rate, and uncertainty estimation

We processed the raw SAR data of ERS-1,2 and Envisat satellites from 1992 to 2010 for interferograms using a modified version of

JPL/Caltech ROI_PAC software package. For Sentinel-1 TOPS and ALOS-2 ScanSAR data we use the InSAR Scientific Computing 

Environment (ISCE) software. General processing steps include interferometric phase flattening using precise orbit, topography phase 

correction, phase unwrapping, filtering and geocoding. For the ERS-2 data after 2001 that have Doppler issue due to gyroscope failure, we 

employ a maximum entropy approach to resolve Doppler ambiguity and identify all usable ERS-2 interferometric pairs. For Envisat 

ASAR sensors, we correct temporally correlated range ramp error due to long-term local oscillator frequency drift by adopting an

empirical approach (Marinkovic and Larsen, 2013). For Sentinel-1 data, we use stack processor to co-register all SAR images to the same 

reference geometry and employ an enhanced spectral diversity technique to estimate azimuth misregistration between all SLC images in a 

stack sense. For L-band ALOS-2 data, we apply a range split-spectrum approach (Liang et al., 2017, 2018) to estimate ionosphere phase 

artifacts and correct them from the interferograms.  

Track Heading Sensors Time span

170 descending ERS+Envisat
1992/06/17-
2010/09/25

399 descending Envisat
2003/06/30-
2010/05/24

349 ascending Envisat
2003/11/14-
2010/10/08

120 ascending Envisat
2003/10/29-
2010/09/22

356 descending ERS
1992/06/29-
1999/10/15

165 descending ALOS-2
2015/02/19-
2019/12/05

173 descending Sentinel-1
2014/11/10-
2019/09/09

071 descending Sentinel-1
2015/05/14-
2019/07/04

Table 1. SAR acquisitions and time span used in the study. 3. GNSS and InSAR velocity data combination for Southern California 

We first divide the region into rectangle grid cells (0.02 x0.02 deg). The coarse grid is used to reduce the computation cost. At each grid cell, all of the available InSAR LOS rate data from different 

tracks (with different viewing geometries) are used. For each of the LOS rate images all the pixel data within the grid cell are averaged to produce a mean rate, weighted by the uncertainties. 

We then determine the offsets/ramps of InSAR images. These parameters are solved together with the 3-D deformation components, and some GNSS data and their interpolated values are included 

in the estimate to stabilize the inversion. Because these offset/ramp parameters are correlated with all the deformation parameters in the study area, an optimal estimate of the offsets/ramps means a 

global solution for all the parameters involved. To limit the scope of inversion We include only (a) the grid points containing direct GNSS velocity observations, and (b) decimated grid points (e.g. 

by a factor of  10 in each dimension). The global solution is obtained through the least-squares regression. 

In the last step the components of offsets/ramps are removed from the InSAR LOS data, and the 3-D velocity is solved for each grid cell through least-squares regression, with GNSS interpolated 

velocity and all the LOS data for the cell incorporated.  The rescaled GNSS and InSAR data uncertainties are used to weight the data input.  The GNSS vertical data are not used to constrain the 

final solution, leaving the vertical deformation constrained entirely by InSAR data. . 

The InSAR data are weighted by their LOS uncertainties. To characterize the 

uncertainties associated with InSAR deformation map, we adopt a Jackknife variance 

estimation approach [Efron and Stein, 1981], which provides a reasonable way to 

account for uncertainties arisen from lacking or missing dates, uncorrected residuals or 

other noises, and/or the influence of reference pixel and date. For each selected track of 

data we compute the differences between the LOS data input and the LOS values 

projected from GNSS velocities at pixels with GNSS occupation. We then determine a 

scaling factor based on the RMS of the LOS comparison (Fig. 4) and the statistically  

averaged LOS uncertainties and scale the data uncertainties accordingly. 

We use a variant of the Small Baseline Subset InSAR time series approach 

to solve for InSAR LOS time series and mean velocity (e.g., Sansosti et 

al., 2010). We incorporate topography dependent troposphere delay 

correction, residual DEM error and earthquake offset estimate, and 

employ spatiotemporal filtering to remove high frequency turbulent 

troposphere noise (Samsonov, 2010; Liu et al., 2014, 2019). For ERS and 

Envisat, since orbital ramp error for data from the same track is typically 

limited to a few acquisitions (e.g., Fattahi & Amelung, 2014) and small, 

we correct only affected interferograms through baseline re-estimation 

with the constraint of a priori GNSS based deformation model. The 

number of pairs with such correction is much less than the total number of 

interferograms that went into the analysis. This ensures that the influence 

of a priori model is negligible. Hundreds of interferograms that meet 

spatial and temporal baseline criteria are formed and used in the time 

series inversion. Table 1 lists SAR data and time span used in this study.

4. Conclusions

1. Using optimally estimated GNSS and InSAR

uncertainties to weight the data provides proper 

accounting of the solution uncertainties, and helps 

adequately assess the solution quality and reliability. 

2. GNSS networks are usually too sparse to adequately 

detect localized vertical deformation, particularly in 

regions affected by hydrologic processes. Existence of 

certain outliers in the dataset makes identification of 

localized deformation even more challenging. The 

optimal approach is therefore to use the GNSS vertical 

data to constrain the satellite orbital ramps only, and 

leave the localized vertical deformation solved by 

InSAR, aided by GNSS horizontal constraints. 

3. The GNSS and InSAR data are generally consistent 

for the horizontal velocities at sub-millimeter per year 

level. The localized vertical deformation is detected, 

particularly for regions experiencing hydrologic and/or 

other tectonic/anthropogenic induced subsidence or 

uplift. These regions include the Los Angeles basin, 

San Gabriel basin, Lancaster, Palm Springs, Searles 

Lake, San Diego, Brawley Seismic Zone, and Imperial 

Valley where hydrologic and volcanic processes 

caused induced subsidence of up to 3-8 mm/yr. They 

also include the southern Sierra Nevada region which 

underwent drought related uplift of 2-3 mm/yr. Uplift 

of 1-3 mm/yr is detected across a transect from the 

northern San Jacinto Mountains to Mojave Desert, and 

in the southern end of the Anza-Borrego Desert region 

near the California-Mexico border. 
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Figure 6. Combined GNSS and InSAR 3-D velocities. (a) 

shows amplitudes of the horizontal components, and (b) the 

vertical components, respectively. Round dots in (b) are GNSS 

vertical velocities, which are used in the orbital ramp 

estimation but not the 3-D velocity solution. Regions show 3-8 

mm/yr subsidence resulted from water withdrawal or volcanic 

deflation are: BS, Brawley Seismic Zone; CG, Coso Geotherm

site; IV, Imperial Valley; SABD, LAB, Los Angeles Basin; LC, 

Lancaster; PS, Palm Springs; SGB, San Gabriel Basin; SD, 

San Diego; SL, Searles Lake. The southern Sierra Nevada is  
found with 2-4 mm/yr uplift, possibly due to draught. 1-3 
mm/yr uplift is detected across a transect from the northern 

San Jacinto Mountains to Mojave Desert, and in the southern 

Anza-Borrego Desert (SABD) region near the California-

Mexico border. (c) and (d) are solution uncertainties for the 

east and vertical components respectively. 

Figure 5. InSAR LOS rate data (top panel) and their uncertainties (lower panel). 

Figure 4. Comparison of InSAR and GNSS projected

LOS data. Red and blue squares are projected 2-D

(horizontal only) and 3-D components, respectively.
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