
By taking the gradient of this combined-
travel time across the network relative to
the point locations (Figure 6d) we can
determine if the points are stationary
(Rawlinson et al, 2009), having a
gradient value close to zero, and
therefore representing a possible
secondary phase arrival pathway.
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The recent deep learning revolution has created an enormous opportunity for
accelerating compute capabilities in the context of physics-based simulations.
Here, we propose EikoNet, a deep learning approach to solving the Eikonal
equation, which characterizes the first-arrival-time field in heterogeneous 3D
velocity structures. Our grid-free approach allows for rapid determination of the
travel time between any two points within a continuous 3D domain. These travel
time solutions are allowed to violate the differential equation, which casts the
problem as one of optimization, with the goal of finding network parameters that
minimize the degree to which the equation is violated. In doing so, the method
exploits the differentiability of neural networks to calculate the spatial gradients
analytically, meaning the network can be trained on its own without ever needing
solutions from a finite difference algorithm. Training and inference are highly
parallelized, making the approach well-suited for GPUs. EikoNet has low
memory overhead, and further avoids the need for travel-time lookup tables

EikoNet is rigorously tested on several toy velocity models, real-world velocity
models to demonstrate robustness and versatility. We outline the application to
earthquake hypocenter inversion, ray multi-pathing, and tomographic modelling.

Outlined are a series of experiments designed to demonstrate the versatility of
our approach for learning travel time fields in complex 3D velocity models, with
applications to toy problems shown in Figure 2 and to the Marmousi2 model in
Figure 3.

Using EikoNet we outline an inversion
procedure leveraging a Stein
Variational Gradient Descent method.
In this procedure we use pre-trainined
Vp and Vs EikoNets for Southern
California, inverting the seismic
station phase arrivals for 15k events
in 2019 to determine earthquake
hypocentral location and location
uncertainty.

Earthquake locations are consistent
with the prior NonLinLoc location
methods (Lomax et al 2010).

For tomographic inversions
which undergo many iterations
successively, new travel-time
fields must
be computed from scratch for
each iteration. Our approach
allows for the neural network
model
from the previous iteration to be
used as the starting point for
the next training procedure,
which
could rapidly converge to the
new velocity model if the
perturbations are relatively
small.

Abstract Velocity Model Experiments

Methods

HypoSVI - Stein Variation Earthquake Location

In this section we discuss the application of EikoNet to a series of travel-time
required problems, outlining the advantage of EikoNet over conventional
Finite-difference methods and how these procedures would implemented.

The deep learning approach can be adapted
to include additional secondary arrivals by
determining the travel-time from two separate
source locations to the same point in space.
(Figure 5b, 5c)

Future Applications

Ray Multipathing

Tomographic Modelling

Figure 1: Overview of processing workflow. (a) Neural network architecture composed of
fullyconnected layers and residual blocks. Each residual block is composed of 3 fully-connected
layers with 512 neurons. ReLu activations are applied on all hidden layers. (b) Summary of Eikonal
equation for Ts→r and Vr. (c) Sampling of source-receiver pairs across the 3D volume to build the
training dataset. (d) Network training through the minimization of loss function relating predicted
and observed velocity values. (e) Inspection of neural network outputs by passing user defined
source receiver pairs.

EikoNet: Solving the Eikonal Equation using Deep Neural Networks, with
applications to earthquake location
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The Eikonal equation is a nonlinear first-order partial differential equation
representing a high frequency approximation to the propagation of waves in
heterogenous media.
Our approach to solving the Factored Eikonal equation by training a deep neural
network, , to predict the travel-time field, , between any input source-
receiver coordinates. This is achieved by leveraging the analytical differentiability of
a neural network, training the neural network gradients to satisfy the partial
differential formulation of the Factored eikonal equation for a user defined velocity
model;

Figure 2 : Velocity model experiments with comparison to finite-difference and imposed
velocity models. Left panels represent the X-Z and X-Y slice from the imposed velocity
model, overlayed by the finite-difference expected travel-time. Middle panels represent
the X-Z and X-Y slice from the neural network recovered velocity model and neural-
network travel-time. Right panels represent X-Z and X-Y slice velocity models
differences between the imposed and recovered velocity model.

Figure 6 : Effects of Transfer Learning on the training loss
for the Block model velocity experiment.
(a) Training snapshots of a full-training procedure and
transfer learning from Homogenous model.
Rows represent the full-training and transfer learning
approaches respectively. Columns represent
the snapshot of the velocity model for a series of training
epochs.

Figure 5 : Seismic ray multipathing
procedure applied to an adapted block
model velocity experiment with low
velocity block and high velocity
background.

Figure 3 : Marmousi2 two-dimensional travel-time formulations using EikoNet and
Finite-Difference Methods. (a) represents a colormap of the imposed 2D velocity model.
(b) the recovered travel-time and velocity model fields from a source location at [0, 0] to a
point grid at 0.001km spacing. Colormap represents the recovered velocity and white
contours represent the travel-time at 0.1s spacing. (c) and (d) represent a similar plot to
(b) but with the different source locations of [0km, 1.1km] and [0km, 2.25km] respectively.

Figure 4: Application of EikoNet earthquake
location package HypoSVI for earthquakes in
Southern California using P- and S-wave picked
catalogue. Comparison made with the prior
NonLinLoc hypocentral locations. Station Locations
and surface mapped fault planes are shown by blue
triangles and grey lines respectively.


