Triggered and spontaneous slow slip transients on the Anza segment
of the San Jacinto fault zone, southern California
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To identify strain change signals:
* 4 BSM stations from the Plate Boundary Observatory (PBO)
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CONCLUSIONS

1a. New triggered slow slip transients identified following the Mw 5.2 June 10, 2016 &
Mw 5.8 slow slip e Mw 4.9 April 4, 2020 earthquakes.

. . SW . Fault Pependicular NE . . . . . .
transient previously ,|B U - B 1b. First evidence of spontaneous slow slip in the region from burst-type repeating
identified by Inbal et | . _ earthquakes on two minor faults in 2015.

al. (2017)

5-minute level 2 processed strain data calibrated using earth tides (corrected for tidal
effects, earthquake offsets and other large static offsets, long-term borehole trends from
settling, and barometric pressure)

b, 4

2. All Mw > 4.5 earthquakes in the study region and period (2010-2016) trigger deep to
moderate-depth slow slip transients with moments greater than the mainshock.
Triggered slow slip occurs on several fault segments both on and off the triggering
earthquake fault.
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3. Slow slip distribution
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Models of slow slip transients:

Julian Day 2010 3. Burst-type repeating earthquakes, like low-frequency earthquakes in tremor,

* Rectangular Okada dislocations (Beauducel, 2020; Okada, 1985). S| lio distribution based burst-t " th " R0 =3
* |ldentified the orientation and dimension (strike, dip, center) of the slow slip fault planes | OV‘;_S Ip distri ‘|‘ 'ot" tr?se c:jnl tl:rsl -byrl)e treli’eaz (','1197’ earthquake =, 210535 . . QO indicate intermittent periods of slow slip.
using the location of the majority of burst-type repeating earthquake families ocations is similar to the model by Inbal et al. (2017) R W 4.  Our observations support a model where deep microseismicity is located in a
*  Grid search to determine the optimal fault length, width, slip and rake. Can use burst-type repeating earthquakes to delineate slow slip transitional region at the bottom of the seismogenic zone with spatially
and identify transients not clearly detected with BSMs heterogeneous frictional properties that produces frequent slow slip transients.
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