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Introduction

We present cumulative distributions for earthquake recurrence intervals, sampled from
the original paleoseismic age constraints. We modeled 11 available paleoearthquake
datasets, most with sufficient length to constrain a probability model. In this poster, we
present the results of the 9 sites in California. The sites are shown in the map below.
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Data and Methodology

We modeled the earthquake recurrence distributions for 11 paleoseismic records,
each of which has at least 5 events. The datasets are from continental strike-slip faults
in California (San Andreas [5], San Jacinto [2], Garlock [2]), and China (Altyn Tagh [1],
Haiyuan [1]). We obtained the raw OxCal files of 10 sites from published research
papers (Akciz et al., 2010, Philibosian et al., 2011, Scharer et al., 2011, Sieh et al.,
1989, Scharer et al., 2007, Scharer et al., 2010, Rockwell et al., 2014, Onderdonk et
al., 2013, Madugo et al., 2012, Liu-Zeng et al, 2015, JGR, Yuan et al., 2018, EPSL)
and reconstructed the OxCal file for EI Paso Peaks site using the published
geochronology data (Dawson et al., 2003). Using the OxCal files, we generated the
distribution of event ages, as constrained from bounding layer ages and stratigraphic
ordering. Using R, we use the distribution of event ages to sample the recurrence
intervals distributions at each site. We then model these with 4 statistical distributions:

Normal, Exponential, Weibull, and the Brownian passage-time model (Matthew et al.,
2002).

Results

We find that recurrence intervals show no central tendency, contradicting the
characteristic earthquake recurrence model. Instead, the recurrence interval
distributions are long-tailed, with the average greater than the median, and the
longest recurrence interval >5x the shortest interval. We find better fits to the
majority of paleoseismic data sets using a Weibull distribution.

We find that the normal distribution poorly fits earthquake recurrence, as expected
from the lack of a central tendency. A minority of data sets are well fit by the
exponential distribution, consistent with a Poisson process with uniform hazard over
time and no memory of prior events. Most of the paleoseismic records, however,
indicate an increase in hazard over time. We find that the Brownian passage-time
model, formulated as perturbations added to steady tectonic loading, systematically
underpredicts the young tail of earthquake recurrence at 4 out of 5 sites with >10
events (arrows on the plots).
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Our analysis of 11 long paleoseismic records (9 from California shown here) favors a Weibull
distribution model. This model may be envisioned as arising from an ensemble of many
possible failure points (earthquake nucleation sites) along a given length of the fault, at each
of which the hazard is growing over time. Once initiated, a rupture grows and propagates
through the point of observation at a paleoseismic trench. This multiple failure-point approach
challenges traditional renewal models for earthquake recurrence. Earthquake distributions
vary widely along the length of the 1857 Fort Tejon earthquake rupture and suggest that this
event ruptured sections of the fault at distinctly different hazard levels. Variations in mean
recurrence and distribution shape suggest that interactions with the Garlock Fault and the
San Jacinto Fault may affect the time-to-failure on the San Andreas fault.
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