The SCEC Broadband Platform: Open-Source Software
for Strong Ground Motion Simulation and Validation

Fabio Silva, Philip J. Maechling, Christine A. Goulet, and Yehuda Ben-Zion
University of Southern California (silva, maechlin, cggoulet, benzion)@usc.edu

Broadband Platform 19.4 Overview
- Open-Source scientific software that can generate broadband (0-100Hz) ground motions
- Calculate ground motions at user specified sites for historical and scenario earthquakes
- Collaborative software development project involving:
 - SCEC Geoscientists
 - Civil Engineers
 - Graduate Students
 - SCEC Community Modeling Environment (CME)
- Integrates complex scientific modules including:
 - Rupture Generation
 - Site Effects Calculation
 - Seismogram Synthesis
 - Visualization
- Provides ground motion models from seven different research groups
- Integrates complex scientific modules including:
 - Collaborative software development project involving:
 - Calculate ground motions at user specified sites for historical and scenario earthquakes
 - Open-Source scientific software that can generate broadband (0-100Hz) ground motions
- Integrated RSQsim-generated rupture slip-time histories into BBP workflow
- Used in study of building response to strong ground motions
- Added Vs30-based site response module to simulation methods
- Migrated Broadband Platform from Python 2.7.x to Python 3.7
- Updated all simulation regions’ GFs and velocity models to use a Vs of 500m/s
- Included Central California, Central Italy, and Southern Walker Lane simulation regions
- Implemented multi-segment rupture capabilities into most BBP simulation methods
- Integrated new Irikura Recipe Method 2 simulation method into the Broadband Platform
- Ticketing system to document and resolve issues, documentation available on wiki

Good Software Engineering Practices
- Formal software releases
- Unit tests verifies that modules are working properly
- Common input/output data formats allows for interchangeable modules
- Automated software testing process
- Modular architecture
- Ranking of PSA period GoF for all realizations
- Combine data from multiple realizations

Scenario Simulations
- Calculate seismograms of a hypothetical earthquake
- User provides event description
- Earthquake location
- Magnitude and Mechanism
- Use sites specified by the user
- 1D Green’s Functions Available
- California (4), Japan (2)

Simulation Methodologies
- Stochastic Method: EXSIM (UWO)
- Broadband Using 1D Green’s Functions: UCSB, Composite Source Model (CSM)
- Hybrid - Green’s Functions LF, Stochastic HF: Gravés & Pitarak (GP), SDSU, SONG, Irikura Recipe Methods 1 and 2

Good Software Engineering Practices
- Modular architecture
 - Supports code integration from multiple sources with minimal changes to original code
 - Common input/output data formats allows for interchangeable modules
- Automated software testing process
 - Unit tests verifies that modules are working properly
 - End-to-end acceptance tests confirm user installation produces expected results
- Formal software releases
 - Version control to track software changes and versions using GitHub
 - Ticketing system to document and resolve issues, documentation available on wiki

Recent Broadband Platform Developments for 2018–2020
- Integrated new Irikura Recipe Method 2 simulation method into the Broadband Platform
- Implemented multi-segment rupture capabilities into most BBP simulation methods
- Included Central California, Central Italy, and Southern Walker Lane simulation regions
- Updated all simulation regions’ GFs and velocity models to use a Vs of 500m/s
- Added Parkfield, San Simeon, Iwate, Chuetsu-Oki, and L’Aquila as new validation events
- Migrated Broadband Platform from Python 2.7.x to Python 3.7
- Added Vs30-based site response module to simulation methods
 - Correction of observations to rock site levels is no longer used in validation simulations
- Used to simulate ground motions produced by large magnitude (M7.5+) ruptures
- In study of building response to strong ground motions
- Integrated RSQsim-generated rupture slip-time histories into BBP workflow
 - Used to calculate large collection of ground motion parameters for M6 to M8 ruptures

The Broadband Platform software development was supported by the Southern California Earthquake Center (SCEC), which is funded by NSF Cooperative Agreement EAR-1660087 and USGS Cooperative Agreement G17AC00047. Additional support was provided by Pacific Gas and Electric.

BBP 19.4 available for download at https://github.com/SCECcode/bbp