Introduction

We demonstrate that strong shallow velocity reductions change amplitude and phase of long-period seismic waves.

Velocity changes are related to:
- Earthquakes - Source effects and soil response.
- Volcanic Activity - Seismic waves are related to volcanic activity.
- Seasonal variations - Precipitation and temperature.

The location and extent of the region sustaining velocity perturbations is inferred from the periods of seismic waves:
- Shallow – strong ground motion
- Deep – source effects

Long-period observations can be misinterpreted to occur at seismogenic depths.

3D Wave Propagation Simulations

2 simulations of 10 earthquakes:
- 1 in the reference model.
- 1 in the perturbed model.

Simulations use Hercules:
- Up to 0.25 Hz, 16 PPW, and 100 s.

Data Processing

Measure the time delay in the frequency-time phase spectrum $\varphi_{sp}(\omega, t)$.

The relative velocity change is

$$\frac{dv}{v} = -\frac{dt}{t}.$$

The time shift is

$$dt(\omega, t) = \frac{\varphi_{sp}(\omega, t)}{\omega}.$$

The amplitude anomaly is

$$\delta A = -\frac{\log(A_1/A_2)}{\omega}.$$

Period-Dependent Effects of Shallow-velocity Reductions

Relative velocity perturbations and amplitude anomalies are observed at periods of 5, 10, and 20 s.

Conclusions

- Shallow localized velocity perturbations can account for phase and amplitude changes at long periods.
- Measurements are comparable with observational studies of velocity changes.
- The localized shallow velocity reduction is detected over the entire simulation domain.
- Shallow localized velocity perturbations can account for phase and amplitude changes at long periods.
- Measurements are comparable with observational studies of velocity changes.
- Strong ground motions can cause shallow velocity reductions. Thus, long-period observations can be misinterpreted to occur at seismogenic depths.
- In observational studies there is measurement uncertainty due to the dynamic nature of the changes and the rapid recovery at seismogenic depths.
- Low velocities in the shallow surface are often ignored in waveform tomography at long periods. However, they can produce apparent anomalies everywhere in the domain.

Reference

Acknowledgments

The study was supported by the Southern California Earthquake Center (based on NSF Cooperative Agreement EAR-1600087 and USGS Cooperative Agreement G17AC00047) and the U.S. Department of Energy (Award #DE-SC0016520).