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Is there a strong correlation between lake loadings & past earthquake
ruptures 1n the Cahuilla basin?

ABSTRACT: Potentially the longest paleoseismic records on SSAF

® The most recent ground-rupturing earthquake (MRE) in the southern San Andreas Fault (SSAF) occurred ~300 years

~33.5-m-deep core extracted from Coachella site
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Fig.1. Inset 1s the hillshade map of CA showing large historical ruptures of the SAF (Philibosian et al., 20111). The oL ~950-1050 AD*® (2011) chronology at the Coachella site, moditied after Philibosian et al. (2011). Rockwell and Klinger (2019) reinterpreted the

shaded relief map of southern California exhibiting the study site (Coachella), the Quaternary faults (USGS & CGS, ¥ 850900 AD* Potential 1S & 4S as lacustrine units (in red). If this 1s true, of the seven past surface ruptures at the Coachella site, as many as six
2006), major paleoseismic sites in the valley, ancient Lake Cahuilla shorelines, and paleo diverted channels of the Colo- : T {Y luminescence (~86%) occurred when the lake was high.(B) Lake filling & subsidence history at the Boarder site sag pond, modified
rado River which periodically filled the lake in the past. 7 _ sample location after Rockwell and Klinger (2019), showing strong correspondence between lake loadings and earthquake cycles.
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hi1 gh I'upture pOtentlahty Of these Strike-slip and normal faults to I'apid 8L ® Ofthe 50% analyzed, as much as 12 lacustrine units are recorded in the core stratigraphy (Fig. 6).

@® The rest of the core 1s currently being dried & stratigraphic logs are prepared.

Not recovered

stress loading associated with lake filling

® With a ~5 mm a' sedimentation rate (Philibosian et al., 2011), we expect to extend the lake cycles back to the
Mid-Holocene (~7—6 ka).

Hypothesis: The lake cycles (filling & drying) of the ancient Lake Cahuilla potentially
triggered surface ruptures along the southern San Andreas Fault (SSAF).

@® Subaecrial (sand-rich) units, bounding the lacustrine units, will be targeting for single-grain post-Infrared Infrared
Stimulated Luminescence (p-IR IRSL) dating.

A continuous sedimentary core (Figs. 2, 3) has the potentiality to reconstruct a long-term: (i) lake filling/desiccation
chronology, (11) a subsidence history of the ancient Lake Cahuilla (when combined with cone penetration test), & (ii1)
sedimentologic context for paleoearthquake and slip rate studies in the Coachella Valley.

FUTURE PLANS: Grain size measurements, CPT survey, dating

swrz——CHZ NIEF % — gg‘élg e ® Continuous grain-size measurements to supplement stratigraphic log & assist in geophysical data interpretation.
SW F19-3 /NE [18 028 — i%(;‘; ;egggmem ® Independent dating techniques (e.g., '*C) will be useful to cross-correlate the different dating results for a robust
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4Ly structural |+ | - ' ® An age model (age-depth relationship) will be used to show the continuous temporal variations in grain sizes.
depression [+

@® Subsurface geotechnical engineering survey (e.g., CPT) will be used at the sag to capture the longest rupture/sub-
sidence, & slip triggered by the movement along the SSAF.
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SWEFZ: southwest fault zone

CFZ.: central fault zone
NEFZ: northeast fault zone

<— Direction of displacement

SW: southwest
NE: northeast
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