Using GPS Derived Shear Strain Rates in Southern California to Constrain Fault Slip Rate, Locking Depth, and Residual Off-Fault Strain Rates

William Holt1, Attreyee Ghosh1,2, Yu Chen1

1Stony Brook University
2Centre for Earth Sciences, Indian Institute of Science, Bangalore 560012, India

We Thank SCEC for support
UCERF3 Velocity Field

Pacific Plate Frame using SNARF PA-NA angular velocity from Hammond and Kreemer [2007]
Method

- Spherical Method [Beavan and Haines, 2001]
- Bi-Cubic Bessel Interpolation of GPS Velocities
- *A priori* information on fault style

\[u(\hat{r}) = rW(\hat{r}) \times \hat{r} \]

\[
\varepsilon_{\phi\phi} = \frac{1}{\cos \theta} \frac{\partial u_\phi}{\partial \phi} - u_\theta \tan \theta + \frac{u_r}{r} \\
\varepsilon_{\theta\theta} = \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \\
\varepsilon_{\theta\phi} = \frac{1}{2} \left[\frac{\partial u_\phi}{\partial \theta} + \frac{1}{\cos \theta} \frac{\partial u_\theta}{\partial \phi} + u_\phi \tan \theta \right]
\]
0.1° x 0.1° Finite Element Grid for Modeling
UCERF3 Velocity Field

Pacific Plate frame

95% Confidence Ellipses

Courtesy of Tom Herring
Model Shear Strain Rates (Pure Strike-Slip Style)
Model Shear Strain Rates (Pure SS) from Inversion of GPS
Bench Marking – Uniform Slip
And Uniform Locking Depth = 10 km

Displacements produced using elastic dislocation model *Okada* [1992], *King et al.* [1994], *Lin and Stein* [2004]
Bench Marking – Uniform Slip

\[\nu = \left(\frac{b}{\pi} \right) \arctan\left(\frac{x}{D} \right) \]

\[\varepsilon_{xy} = \left(\frac{bD}{2\pi} \right) \left(x^2 + D^2 \right)^{-1} \]

Savage and Burford [1973]

Displacements produced using Okada [1992], King et al. [1994], Lin and Stein [2004]
Bench Marking – Uniform Slip

Displacements produced using Okada [1992], King et al. [1994], Lin and Stein [2004]
Bench Marking – Non-Uniform Slip
Effective Locking Depth (SJF) = 6 km
Slip Rate = 12 mm/yr

Effective Locking Depth (SAF) = 7 km
Slip Rate = 17 mm/yr
Tectonic Moment Rate Per Unit Area (0.1° x 0.1°)

\[\dot{M}_o = 2 \mu V (|\dot{\sigma}| + \sqrt{\dot{\gamma}_1^2 + \dot{\gamma}_2^2}) \]

Tectonic Moment Rate for SC = 2.2x10^{19} N-m/year

30% of total Mo rate is associated with off-fault deformation
An Automated Geodetic Network Processing Tool for Detecting Crustal Strain Transients

PBO Network

PBO Data Archive from UNAVCO
Transient Detection
Movies of Strain from PBO cGPS
2010.5 – 2012.5

Total

Total – Reference = Anomalous
Transient Detection

Our procedure tests the null hypothesis that the time-dependent strain field inferred from the cGPS is equivalent to the long-term steady-state reference solution using the t-statistic:

$$t = \frac{E(\hat{e}_{ij} - e_{ij}^o)}{S_E}$$
Figure 10c

T-statistic Anomalous Strain Accumulation over 2 years
Conclusions

• Horizontal velocity gradient tensor field in SC is well resolved. It can be further improved with joint analysis of InSAR.
• Using shear strain rates associated with pure strike-slip faulting filters out potential contamination from off-fault deformation. This data product may be better suited for resolving fault slip rate and effective locking depths along the major shear zones.
• cGPS valuable for resolving anomalous strain tensor field associated with transients.
Effective Locking Depth = 4 km
Slip Rate = 34 mm/yr

Shear Strain Rate Magnitudes
Effective Locking Depth = 10 km
Slip Rate = 21 mm/yr
Slip rate = 9 mm/yr
Exy Profile

Effective Locking Depth = 6 km
Slip Rate = 41 mm/yr

Distance along profile (meters)

Shear Strain Rate Magnitudes

1x10^-16 yr^-1