Session 1: Target applications for CGM

CGM as a time-dependent reference frame for transient detection

SCEC Community Geodetic Model (CGM) workshop
May 30-31
Menlo Park, CA
Geodetic Transient Detection

• Objective: “Develop a geodetic network processing system that will detect anomalous strain transients”

• Observation: Systematic monitoring lagged despite;
 • Growth in permanent GPS and strainmeter networks
 • InSAR time series analysis techniques
 • Growing number of transient events observed world-wide

• Organizers: Rowena Lohman, Jessica Murray, Duncan Agnew
Key issues:

• What is a transient?
 – Why are we interested?
 • Real-time monitoring of transient deformation and associated seismicity
 • Characterization of signals for investigating underlying processes
 • Identification of non-tectonic signals
 • Tracking of data quality
 • Planning future network development to improve detection thresholds

Previous efforts:
• Require some spatial, temporal coherence
• “Characterization” requires treatment of seasonal + new, larger postseismic

– Real signals:
 • Vastly different temporal scales
 • Propagate spatially
 • Seasonal cycle varies from year to year
 • Instrument issues

Currently: no way of determining if transient is “real”
Results from synthetic testing

• Most successful:
 – Kalman filtering, different basis function types
 – PCA of raw or filtered signals
 – Analysis of temporal variations in strain

• Also explored
 – Simple visual inspection of time series and/or SNR over moving time window
 – Fitting of piecewise linear segments
 – Application of image processing techniques

Shared: detect features with spatial and/or temporal coherence
“Automation” remained a challenge
Progress of TAG as a whole

• Last month:
 – Publication of SRL special section on Transient detection
 – (4 papers + intro)

• Herring/Ji
 – Applied approach to:
 • Akutan volcano, Alaska
 • Cascadia, Washington
 • Cascadia, Oregon
 • Cascadia, California
 • Yellowstone (horizontal), Wyoming
 • Yellowstone (vertical), Wyoming
 • Long Valley, California
 • Parkfield (coseismic), California
 • Parkfield (postseismic), California
Progress of TAG as a whole

- Last month:
 - Publication of SRL special section on Transient detection
 - (4 papers + intro)

- Herring/Ji
 - Applied approach to:
 - Akutan volcano, Alaska
 - Cascadia, Washington
 - Cascadia, Oregon
 - Cascadia, California
 - Yellowstone (horizontal), Wyoming
 - Yellowstone (vertical), Wyoming
 - Long Valley, California
 - Parkfield (coseismic), California
 - Parkfield (postseismic), California
Progress of TAG as a whole

- Last month:
 - Publication of SRL special section on Transient detection
 - (4 papers + intro)

- Holt
 - Strain-based approach
 - Initial difficulties with use of velocities when stations came in and out of network
Challenges w/ real data

• Common procedures to most algorithms:
 – Load data
 – Remove trend
 • Either directly estimated from data, or with PBO/SCEC solutions
 – Remove seasonal sinusoids (1 to several)
 – Remove coseismic/postseismic
 – Filter/PCA/etc. on result
Challenges w/ real data

coseismic/postseismic, seasonal

SCEC Geodesy
Community Velocity Model
Automated Transient Detection
Geodetic Source Inversion Validation
Challenges w/ real data
coseismic/postseismic, seasonal
Challenges w/ real data
coseismic/postseismic, seasonal
Challenges w/ real data

coseismic/postseismic, seasonal
Challenges w/ real data
coseismic/postseismic, seasonal

SCEC Geodesy
Community Velocity Model
Automated Transient Detection
Geodetic Source Inversion Validation
Challenges w/ real data

coseismic/postseismic, seasonal
Challenges w/ real data
coseismic/postseismic, seasonal
Challenges w/ real data

coseismic/postseismic, seasonal
Challenges w/ real data

coseismic/postseismic, seasonal
Challenges w/ real data

coseismic/postseismic, seasonal

Detrended

Seasonal removed
Challenges w/ real data
coseismic/postseismic, seasonal
• Are seasonal signals interesting “transients”
 – Or at least, divergences from sinusoids? *(yes, particularly inter-annual)*
 – How many years of data do we need?

• Errors on secular rates allow assessment of divergences

• Treatment of coseismic/postseismic
 – For many Salton trough sites, does S.E.M contamination mean rates can only be defined using pre-2010 data?
 – Smaller events – choosing cutoff/modeling approach