a brittle rheology model? (are you sure you really want one...what is it that you want) crm workshop 022723

Figure 3.5. Schema of the CFM CSM
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b [Organize TAGs for community models, as appropriate, including a TAG to develop a| x

SYn Opti c Of the crm circa SCEC 5 year ] geologic framework for the Community Rheology Model (CRM).
n |Construct a provisional 3D geologic framework of southern California, as a first step X

( 2017 ) towards developing a CRM. Convene a workshop on how to characterize the brittle,
ductile, plastic, and viscoelastic rheologies of the southern California lithosphere,
including shear zones.

p [Unify representation of SCEC community models, including refined CFM and CVM X
structures and prototypes of the CTM and CRM, and enhance their interoperability.
Release a CRM that incorporates the rheologies of shear zones.

i |ldentify key material parameters that will be necessary to characterize inelastic behavior X | X |X
of geomaterials in the upper crust and near-surface deposits, and define strategies to add
these data to community models (e.g., CVM, CRM) for use in forward and inverse
modeling.

f |Populate the CRM with rheology models (velocity, anelastic attenuation, nonlinear X
properties) of the rock and soil layers of the crust to capture nonlinear phenomena such
as off-fault plasticity, permanent ground deformation and earthquake triggered ground
failure phenomena in physics-based simulation.

o [Implement mixing laws for polymineralic rocks of the CRM. Release CRM version 1.0 that X
includes 3D geologic framework and constitutive models consistent with the CTM.




a brittle rheology model? shear zone thickness/degree of localization
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a brittle rheology model? along strike.... crm workshop 022723

San Andreas: Offset 250 km; Length 1000 km

Los Gotos to Cholame

San Juan Boulista

Cholame to Little Rock Reservoir

Wesnousky (1988)

SAN JACINTO FAULT ZONE: TOTAL OFFSET=25km; LENGTH=230km.
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a brittle rheology model?

depth...
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a brittle rheology model?
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what’s the effective stress ?
Rice 1992
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