Session 2: Distributed Acoustic Sensing for Earthquake Science
What is distributed acoustic sensing (DAS)?

Distributed acoustic sensing uses laser light pulses that are Rayleigh
backscattered from small variations in the refractive index of the fiber. An
interrogator unit (IU) rapidly and repeatedly sends laser pulses into the
cable and monitors the return time of the back-scattered light.

When a seismic wave passes by the fiber-optic cable, the cable is
deformed, the scatterers move, and the |U detects the changes in the return
time of the scattered light. This yields broadband measurements of strain (or
strain rate) along the fiber with a spatial resolution on the order of meters

over distances of multiple kilometers.
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large-scale DAS data

Eileen Martin, Virginia Tech

Advances in passive seismic algorithms for

Why are faster, more efficient algorithms
needed for working with DAS data?
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Eileen Martin, Virginia Tech

Advances in passive seismic algorithms for
large-scale DAS data

Urban seismology: . Glacier movement, ice quakes
earthquake hazards and infrastructure '

..........................................................................................................................

Subsurface energy: new sensors
for unconventionals, CO2, geothermal
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Eileen Martin, Virginia Tech

Advances in passive seismic algorithms for
large-scale DAS data

Some targets for improved algorithms:
0 Noise removal
[0 Noise as signal - ambient noise processing

0 Real-time data products (SOH, low-f data)



Eileen Martin, Virginia Tech

Advances in passive seismic algorithms for
large-scale DAS data

Map to more efficient ambient noise analysis
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Hawthorne
M4.3 earthquake

See: Feigle & the PoroTomo team (2018)
" Wang et al. (2018)
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Martijn van den Ende, University Cote d’Azur

The challenges (and solutions) of using fibre-optic
cables as seismological antennas
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Martijn van den Ende, University Cote d’Azur

The challenges (and solutions) of using fibre-optic
cables as seismological antennas
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Martijn van den Ende, University Cote d’Azur

The challenges (and solutions) of using fibre-optic
cables as seismological antennas

Interpretation - DAS directional sensitivity

Scattered
phases (slow)

Direct P/S-
arrivals (fast)




Martijn van den Ende, University Cote d’Azur

The challenges (and solutions) of using fibre-optic
cables as seismological antennas

Solution - use seismometer as reference, integrate DAS data

DAS strainrate (0.5-1.0 Hz) - DAS / Nodal velocity (0.5-1.0 Hz)
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Bin Luo, Stanford University

Distributed acoustic sensing using long range
submarine fiber-optic cables

Submarine fiber-optic cable at Monterey Bay

» A 52-km-long submarine fiber-optic
cable connecting to the MARS
observatory

» The cable trajectory intersects with
multiple fault zones




Bin Luo, Stanford University

Distributed acoustic sensing using long range
submarine fiber-optic cables

Use DAS data to study signals and noise in the ocean
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Bin Luo, Stanford University

Distributed acoustic sensing using long range
submarine fiber-optic cables

Use DAS data to detect earthquakes and estimate magnitudes

30

M>1.1 earthquakes are detected
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Bin Luo, Stanford University

Distributed acoustic sensing using long range
submarine fiber-optic cables

Use DAS data to detect faults via scattered waves

Monterey San Gregorio
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project

Sources of
persistent
surface waves

60 second DAS
noise record

Abundant
sources of
noise:
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project

Close to

Brawley Close to Imperial

Field Fault Transition
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project

Body-wave tomography
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Jonathan Ajo-Franklin, Rice University

Exploring The Subsurface with Regional DAS Networks:
Results from the Imperial Valley Dark Fiber Project

DAS & Dark Fiber for Fault Observatories?

* Recent studies have shown the benefits of large N arrays across faults for both imaging &
monitoring seismicity.

L]

* A large number of locations across CA where the San Andreas and associated fault systems cross
existing subsurface fiber lines.

* Potential for effectively instrumenting faults in high resolution; value increases with continuous
acquisition. Also potential for inter-array imaging.

* Continuing acquisition on this and other transects could provide a powerful resource for exploring
the fine scale characteristics of the most relevant active faults. A community opportunity?
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DAS for aftershock recording
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Rapid Response to the 2019
Ridgecrest Earthquake With
Distributed Acoustic
Sensing, AGU Advances,
Volume: 2, Issue: 2, First
published: 25 June 2021, DOI:
(10.1029/2021AV000395)

Turning a telecom
fiber-optic cable into an
ultra-dense seismic array
for rapid post-earthquake
response in an urban area,
Seismological Research
Letters, revised and
resubmitted, Aug. 2021.



