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There are lots of preserved shear zones
in the central and southern SNB

Intra-arc deformation recorded by 14
mapped discrete ductile and ductile-
brittle shear zones that are preserved at
plutonic levels

Well studied: timing, sense of motion,
P/T conditions, rock fabrics

‘New/in progress: timing,

- deformation conditions,
stress/strain estimates

Nadin et al., 2016



Shear zones follow age gradients

Located between
older/colder (>100 Ma) and
younger/hotter (<95 Ma)
sections of the batholith

strong horizontal thermal gradients developed
between longitudinal age zones of the batholith
(Barton & Hanson, 1989) --> ideal for strain
localization



Shear zones young from west to east
deformation style changes
from north to south®
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Chapman et al., 2012
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Proto-Kern Canyon
Fault:
opportunity to
examine a vertical
profile of a shear
zone

T varies with depth,
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Batholithic Intrusives
Cretaceous,
+> | nondifferentiated
l:l ca.95-84 Ma*
I:' ca.94-100 Ma*
D <a.96-100 Ma*
- ca.98-102 Ma*
[ 102-105Mar
7] pre-Jurassic,
118.25 nondifferentiated

Pre-faulting pluton (102 Ma)
Quartz axes = random

T ~725 °C (TitaniQ)

P ~3.5 kbar (~11 km) (Al-in-hbl)

n=119

Pre-faulting pluton (102 Ma)
Quartz axes = random

T ~520 °C (TitaniQ)

P ~4 kbar (~13 km) (Al-in-hbl)

n=131

Pole plots are of quartz c axes, lower hemisphere



EBSD: measured single grains of
dynamically recrystallized quartz

1185 LEGEND . Bathol Intrusives
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d vol
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Late Cretaceous
Rand schist - ca.94-100 Ma*
Tehachapi complex,
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metasedimentary ca.98-102 Ma*
ey,
[ cat02- 105 Ma

pre-Jurassic,
nondifferentiated

Cummings
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Sample Age (Ma) T(°C) Depth (km) Regime
02A 89 725 xlization; 11 3
475 deformation
02B 94 480 11 2
02F 104 475 12 1
02H 95 485 11 3
02E Met. 2
021 Met. 415 2
02J Met. none

o (Kilian & Heilbronner, 2017)
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875 1185 LEGEND " Batholithic Intrusives
Non-Batholithic Elements Fv] Cretaceous,
Rondiaerted
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Depth (km)

Regime

03B

86

550 (2-feldspar)—>
450

12

03C

Quartzite

1?

O3F

Phyllite

none

03G

Quartzite

none

R

.

Tehachapi

Cummings
Valley




1185 LEGEND

Sample Age (Ma) T(°C) Depth (km) Regime
11F 103 510 15 3
11H vein 485 3
10A ca. 115* 20 3
10D ca. 100 510 20 3 lo-strain?
10F ca. 100 530 20 ?

*the orthogneiss of Tweedy Creek is considered a metasedimentary
unit inside the 90 Ma part of the Domelands suite
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Sample

03B1

03B2
02B
02H
02|
11H

Geothermal gradient = 45C/km
assumed for magmatic arc

o (Mpa)

78
85
62
62
40
108

T est (°C)

465 +/-22
465 +/-22
479 +/-28
486 +/-7
414 +/-4
483 +/-41

Depth (km) Strain Rate

12
12
11
11

15

(Probably cooled/exhumed during/before deformation)

Temperature ("C)

Nevitt et al., 2017
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CONCLUSIONS

1. Exhumed fault zones are excellent natural laboratories that need further study in order to
constrain realistic rock strengths in deformation zones

2. The Proto-Kern Canyon fault was active during Sierra Nevada magmatic activity (95—-85) Ma,
as a transpressional structure. The fault is exhumed to depths from ~10-20 km, and overprints
igneous and metamorphic rocks

3. Deformation is effectively halted along the western contact with older (>100 Ma) intrusives,
and is spaced through the younger intrusives along the eastern edge. Deformation fabrics are
most intense in the youngest and warmest intrusive rocks.

4. Estimated fault stresses range from ~40-110 MPa, which, coupled with temperature
estimates from 400-500 °C, yield strain rates from ~104 (in older, reheated metamorphic
rocks) to 1011 MPa (in the deepest/warmest rocks). [This is consistent with other shear zone
studies in the SNB, i.e., Nevitt et al., 2017].



Discussion Questions from January SGTF

Strength of shear zones

Can equilibrium mineral assemblages in shear zone rocks be used to reliably quantify water content
at time of deformation and therefore be used as evidence for hydrolytic weakening?

How can we quantitatively relate quartz microstructures found in experimentally deformed rocks to
those found in naturally deformed rocks? (l.e., when relating naturally deformed rocks to
experimentally deformed rocks, how can we be sure we're comparing apples to apples?)

What mechanisms control shear zone width?

Given a large-scale shear zone that narrows through time and space as strain localizes, what
evidence would be required in order to quantify shear zone thickness (width) at a given time?



