Rheology and Localization
From the lab to the lithosphere
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Community Geodetic Model

* Significant
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What 1s a rheology?

 Relation between stress and deformation
«0=f(¢T,P,C,F,g,Con, =2 ...)
o Strain €
o Strain rate &

o Temperature T NOT A

e Pressure T
* Composition/mineralogy C NUMBER'
* Fabric F

* Grain size g

* Water content Cpy
 Stress regime

* (Can also express apparent viscosity n = o /2¢




Strength envelope approach

Various deformation
mechanisms provide
estimates of stress required
to deform at specified strain
rate
* Brittle regime: strength
increases with depth
* Depends on tectonic regime

* Depends on pore fluid
pressure

* Minor dependence on rock
type
* Ductile regime: strength
decreases with depth

* Depends on rock type
(composition, grain size,
water content)

* Rheology temperature
activated

Strength for the weakest
process




Example using RHEOL_GUI

* Freely available Matlab-based GUI
do1:10.5281/zenodo.1341844.

* https://github.com/montesi/ RHEOL_GUI




Demo model — Imm grain size

Temperature
profile from CTM




What really happens?

In each stratigraphic layer from top to bottom
* Determine the function T(z) and P(z)
 Find the weakest rheology R, on top (zp )

* For every rheology that is weaker than R,,, at the
bottom of the layer:

* Solve for the depth z,, where that law has the
same strength as Ry,

 Identify the rheology with the shallowest z,

* Define the rheology sublayer from zq;, to zs and
associate rheology Ry,

* Remove R, from available list of rheologies |
* Define the new z,, as the old z,

« If we’re not at the bottom of the stratigraphic
layer, iterate.

Note 1. 1f grain size 1s set to a piezometer, we
solve simultaneously for grain size and stress

Note 2: If a rheology i1s labeled as “wet”, we
calculated water fugacity as function of
Temperature and Pressure

Note 3: Profile continuous within strata and
discontinuous at strata boundary




Demo model — Effective rheology
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« Highly non-linear behavior

e Favors localization

* Gordon and Houseman (2015):
n=30 1n oceanic lithosphere
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Demo model — Effective rheology
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Demo model — Effective viscosity
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Demo model — Effective viscosity
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* Significant

Sandwell et al., 2016

strain rate ‘

variations

: 36 \'
e LLocalized X K A
shear zones _—
» Within AN
blacks

32°

e Stressor 3 I NN
rock type? w \\\
| |

|
—122° -120° -118° -116° ~114°




Three localization scenarios

Inherited Imposed Dynamic
localization localization localization

Montési and Zuber, 2002




Faults and shear zones

Sibson 1977, 1983

Scholz 1988,1990 Diagram from Passchier and Trouw




Shear zone structure

* Requires change 1n
state or environment
* Temperature
e (Grain size

e Interconnection of
weak phase

* Abundance of weak
phase

* Composition
(metamorphism, melt)

Protolith

L-S tectonites, South Armorican Shear Zone

F. Gueydan, personal communication, 2006




Reduced grain size

Temperature
profile from CTM




Effective rheology — grain size

Zmax
S = j odz
0




Effective rheology — Micas

Zmax
S = j odz >
0




Dry lower crust

Temperature
profile from CTM




Effective rheology — wet vs. dry

Zmax
S = j odz
0




omparison with geodetic models
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Caveat: no variation in structure or

temperature profile in rheological model
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Summary

e (Grain size
reduction
Increases

. 6°
strain rate by’
~100

e [.ocalized

Sandwell et al., 2016
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Lithospheric rheology models

Strength envelope approach (Brace
and Kohlstedt, 1980)

* Brittle strength from Byerlee (1978)
with hydrostatic conditions in the
crust

* Dry olivine mantle (Hirth and
Kohlstedt, 2006) with dislocation
creep, diffusion creep, and dis-GBS
creep

* Wet anorthosite crust (Rybacki and
Dresen, 2006) with dislocation creep
and diffusion creep

Conductive temperature profile
(15°C to 1350°C) with surface
geotherm of 20 or 50 K/km
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I.ocalization Potential

 Compare work 1n localized and distributed states

* Localization potential: Maximum L=H/h for which
localized state requires less work for same overall velocity

Distributed Localized

Montesi, 2013




