Core Institutions and Board of Directors (BoD)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>USC</td>
<td>Tom Jordan*</td>
</tr>
<tr>
<td>Caltech</td>
<td>Nadia Lapusta**</td>
</tr>
<tr>
<td>Harvard</td>
<td>Jim Rice</td>
</tr>
<tr>
<td>Harvad</td>
<td>MIT</td>
</tr>
<tr>
<td>UC Los Angeles</td>
<td>Peter Bird</td>
</tr>
<tr>
<td>UC Riverside</td>
<td>UC Riverside</td>
</tr>
<tr>
<td>UC Santa Cruz</td>
<td>Emily Brodsky</td>
</tr>
<tr>
<td>USGS Pasadena</td>
<td>UNR</td>
</tr>
<tr>
<td>At-Large Member</td>
<td>Roland Bürgmann</td>
</tr>
<tr>
<td>At-Large Member</td>
<td>Judi Chester*</td>
</tr>
</tbody>
</table>

Science Working Groups & Planning Committee (PC)

<table>
<thead>
<tr>
<th>Group</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismology</td>
<td>Egill Hauksson*</td>
</tr>
<tr>
<td>Tectonic Geodesy</td>
<td>Jessica Murray*</td>
</tr>
<tr>
<td>EQ Geology</td>
<td>Lisa Grant Ludwig*</td>
</tr>
<tr>
<td>Computational Sci</td>
<td>Yifeng Cui*</td>
</tr>
</tbody>
</table>

Advisory Council (AC)

<table>
<thead>
<tr>
<th>Members</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Freymueller, Chair</td>
<td>U Alaska</td>
</tr>
<tr>
<td>Gail Atkinson</td>
<td>Western Ontario</td>
</tr>
<tr>
<td>Roger Bilham</td>
<td>U Colorado</td>
</tr>
<tr>
<td>Susan Cutter</td>
<td>U South Carolina</td>
</tr>
<tr>
<td>Donna Eberhart-Phillips</td>
<td>UC Davis</td>
</tr>
<tr>
<td>Bob Littie</td>
<td>Oregon State U</td>
</tr>
<tr>
<td>Kate Long</td>
<td>CalEMA</td>
</tr>
<tr>
<td>Farzad Naeim</td>
<td>John A Martin</td>
</tr>
<tr>
<td>John Vidale</td>
<td>U Washington</td>
</tr>
<tr>
<td>Andrew Whittaker</td>
<td>MCEER/Buffalo</td>
</tr>
</tbody>
</table>

Center Management

<table>
<thead>
<tr>
<th>Roles</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Director</td>
<td>Tom Jordan</td>
</tr>
<tr>
<td>Deputy Director</td>
<td>Greg Beroza</td>
</tr>
<tr>
<td>Associate Director</td>
<td>John McRaney</td>
</tr>
<tr>
<td>Special Projects/Events</td>
<td>Tran Huynh</td>
</tr>
<tr>
<td>Contracts & Grants</td>
<td>Karen Young</td>
</tr>
<tr>
<td>Admin Coordinator</td>
<td>Deborah Gormley</td>
</tr>
<tr>
<td>Communication, Education & Outreach</td>
<td>Bob de Groot</td>
</tr>
<tr>
<td>Information Technology</td>
<td>David Gill</td>
</tr>
<tr>
<td>Research Programmer</td>
<td>Scott Callaghan</td>
</tr>
<tr>
<td>Systems Programmer</td>
<td>Fabio Silva</td>
</tr>
<tr>
<td>John Yu</td>
<td></td>
</tr>
</tbody>
</table>
Welcome to the 2013 SCEC Annual Meeting!

Hard to believe, but we’re chugging at full steam through the second year of SCEC4! At this annual meeting, we’ll have a chance to share our recent research accomplishments with the full SCEC collaboration and discuss our plans for achieving our ambitious science goals.

The SCEC Science Planning Committee has configured a program that will keep you very busy during your stay in Palm Springs. Four half-day workshops will be held on Sunday. At 6pm that evening, Professor Thomas O’Rourke of Cornell University will kick off the main meeting as our Distinguished Speaker with a talk on “Earthquake Effects on Critical Infrastructure.”

Over the next three days, the agenda will feature keynote speakers on thought-provoking subjects, discussions of major science themes, poster sessions on research results, earthquake response exercises, technical demonstrations, education and outreach activities, and some lively social gatherings. The overall goal of the meeting is to assess the collaboration’s progress towards the five-year SCEC4 objectives.

Veterans of past SCEC meetings know that much of the action happens in the poster sessions. In a very popular change, brought back last year, posters will stay up for the entire meeting to allow more face-to-face interactions on the nitty-gritty aspects of SCEC scientific research. As always, we will be looking for ways to improve the meeting, so give us your comments on any and all aspects of the meeting.

We hope you enjoy the science, the meals, the good company, and the spectacular tectonic setting of Palm Springs!

Thomas H. Jordan, Director

Gregory C. Beroza, Deputy Director

Go to meeting website: www.scec.org/meetings/2013am

Cover Image

Comparison between measured and modeled postseismic deformation following the 2010, Mw 7.2, El Mayor-Cucapah earthquake. Black vectors and colored circles respectively show horizontal and vertical displacements accumulated over one year following the earthquake measured from GPS. Green vectors and background shading respectively show horizontal and vertical displacements predicted from the model. The model simulates viscoelastic relaxation in the asthenosphere, which is uncommonly shallow in the Salton Trough due to the onset of extension and lithospheric thinning, courtesy of Chris Rollins, Sylvain Barbot and Jean-Philippe Avouac (California Institute of Technology).
AGENDA

Saturday, September 7

16:00 - 19:00 SCEC Annual Meeting Pre-Registration Check-In at Hilton Lobby

Sunday, September 8

07:00 - 18:30 SCEC Annual Meeting Registration & Check-In at Hilton Lobby

07:00 - 08:00 Breakfast at Hilton Poolside

08:00 - 20:00 Poster Set-Up in Plaza Ballroom

08:00 - 12:00 **Workshop: SCEC Source Inversion Validation (SIV)**

Present results on benchmarks for the M7 normal-faulting ruptures, one of which is embedded in a 3D heterogeneous Earth model that leads to seismic scattering and hence uncertain Green’s functions. Design first benchmark exercise for teleseismic source modeling.

Conveners: P. Martin Mai (KAUST), Danijel Schorlemmer (GFZ), and Morgan Page (USGS)

Location: Horizon Ballroom I, Hilton Palm Springs

Source Inversion Validation

- **Input=Target**
- **Model Predictions**
- **Goodness of Fit**
- **Model Comparison**

08:00 Introduction & Workshop Goals (Martin Mai)

Current SIV benchmarks and results

08:15 Seismic Source Inversion and Back Projection (Yuji Yagi)

1. Introduction of uncertainty of Green’s Function into Waveform Inversion for Seismic Source Processes

2. Theoretical Relationship Between Back-Projection Imaging and Inverse Solutions

08:45 Toward Accounting for Prediction Uncertainty When Inferring Subsurface Fault Slip (Zacharie Duputel)

09:15 Uncertainty in Kinematic Rupture Models from Variation in Source time Function and Earth Structure (Hoby Razafindrakoto & Martin Mai)

09:30 Near Realtime Teleseismic and Geodetic Finite Fault Modeling at the NEIC (William Barnhart & Gavin Hayes)

09:45 High Resolution Finite Fault Modeling of the Largest Events (M>4.8) in the 2012 Brawley Swarm (Shengji Wei)

10:00 Group Discussion on Workshop Presentations

10:15 Break

10:30 Group Discussion

- Reconciling Back-Projection & Seismic Source Inversion
- Accounting for Uncertain Earth Structure in Source Inversion
- What Do We Learn from Near Real-Time Source Inversion?
- Defining the Next SIV Benchmark: Teleseismic Source Inversion

12:00 Adjourn
Sunday, September 8

08:00 - 12:00 Workshop: SCEC BroadBand Platform and Ground Motion Simulations – Recent Progress on Validation of Methods and Planning the Next Steps
Focus on the validation of methods for ground motion simulations and on the development of forward simulations for engineering applications, using methods implemented on the SCEC BroadBand Platform (BBP).

Conveners: Norm Abrahamson (PG&E) and Christine Goulet (PEER)
Location: Horizon Ballroom II, Hilton Palm Springs

08:00 Introduction (Norm Abrahamson)
08:15 Validation Exercise: Summary and Sample Results (Christine Goulet)
08:35 First Round Validation: Evaluation of Broadband Platform and Ground Motion Simulation Results (Doug Dreger)
09:05 Group Discussion: Parametrization, Improvement to Metrics, etc.
09:45 Break
10:00 Forward Simulations: Sample Preliminary Results and Issues Encountered (Katie Wooddell)
10:30 Group Discussion
10:45 Where to Go From Here? Priorities for Research and Development for the Next Few Years (Norm Abrahamson)
11:00 Group Discussion
12:00 Adjourn

12:00 - 13:00 Lunch at Hilton Palm Springs Terrace Restaurant and Poolside
Sunday, September 8

13:00 - 17:00 Workshop: SCEC Earthquake Simulators
Review status of comparisons on two problems considered in the SCEC Collaborative Project on Comparison, Verification, and Validation of Earthquake Simulators: (1) jumping of ruptures from one fault to another, and (2) many-fault simulated earthquake histories based on the UCERF3 deformation model(s).

Conveners: Terry Tullis (Brown)
Location: Horizon Ballroom I, Hilton Palm Springs

- **13:00** Welcome and Introduction: Purpose of Sixth Workshop
- **13:10** Discussion Topic 1: Jumping of rupture from one fault to another
 - How far ruptures can jump from one fault to another using the simulators as they currently exist (which seems to be less than observed ruptures)? What are observed distances?
 - What modifications represent the best approach to make them jump more realistic distances?
 - What additional statistical comparison tools do we need for this problem?
- **14:00** Discussion Topic 2: Many-fault simulated earthquake histories based on the UCERF3 deformation models
 - Settling on the best approach to assigning stress-drop values for all of the fault sections
 - How many of the UCERF3 deformation models should be used as input?
 - Explore the effect on the statistics of including a solution for encouraging fault-to-fault jumps in the UCERF3 simulations
- **14:45** Break
- **15:15** Discussion Topic 3: Looking forward, studying the behavior of earthquake simulators can provide valuable insights into the behavior of actual earthquake interactions and sequences and the character of earthquake catalogs
 - What is the best way to study this within SCEC?
 - In particular, is a collaborative project and TAG as has existed for the past several years the best approach?
 - If a TAG is the best approach, who will lead it?
- **17:00** Adjourn
Sunday, September 8

13:00 - 17:00 Workshop: SCEC Ground Motion Simulation Validation (GMSV) – Recent Progress and Future Plans
Review progress on the SCEC Software Environment for Integrated Seismic Modeling (SEISM) project and develop plans for future projects, such as those that will support the SCEC Committee for Utilization of Ground Motion Simulations (UGMS).
Convener: Nico Luco (USGS) and Sanaz Rezaeian (USGS)
Location: Horizon Ballroom II, Hilton Palm Springs

Ground Motions in Earthquake Engineering

13:00 Welcome & Overview of Various SCEC Validation Efforts (Tom Jordan)
13:05 Workshop Objectives and Agenda (Nico Luco)

GMSV TAG Efforts for SCEC SEISM Project
13:15 Focus of “GMSV-SEISM” Efforts (Nico Luco)
13:30 Validation for Engineering Analysis Using Simple and Robust Ground Motions Parameters (Lynne Burks, Jack Baker)
13:50 Validation for Building-Code Nonlinear Response History Analysis (Farzin Zareian, Peng Zhong, Iunio Iervolino)
14:10 Validation Approach for Application of Simulated Ground Motions to Duration-Sensitive Geotechnical Systems (Kioumars Afshari, Jonathan Stewart)
14:30 Discussion of “GMSV-SEISM” Efforts
14:55 Break

SCEC GMSV Technical Activity Group Projects
15:10 Overview of GMSV TAG Efforts Presented Elsewhere (Sanaz Rezaeian)
15:30 Validation of Earthquake Simulations and Their Effects on Tall Buildings Considering Spectral Shape and Duration (Ting Lin, Greg Deierlein)
15:45 Validation of Ground Motion Simulations for Seismic Slope Stability (Ellen Rathje)
16:00 Support of SCEC Committee for Utilization of Ground Motion Simulations (C.B. Crouse)
16:15 Discussion of Future GMSV TAG Efforts
17:00 Adjourn
AGENDA

Distinguished Speaker Presentation (Sunday 18:00)
Earthquake Effects on Critical Infrastructure, Tom O’Rourke (Cornell) – see p.10

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00 - 18:00</td>
<td>Annual Meeting Ice-Breaker in Hilton Lobby and Plaza Ballroom</td>
<td></td>
</tr>
<tr>
<td>18:00 - 19:00</td>
<td>Distinguished Speaker Presentation in Horizon Ballroom</td>
<td></td>
</tr>
<tr>
<td>19:00 - 20:30</td>
<td>Welcome Dinner at Hilton Poolside</td>
<td></td>
</tr>
<tr>
<td>19:00 - 21:00</td>
<td>SCEC Advisory Council Meeting in Tapestry Room</td>
<td></td>
</tr>
<tr>
<td>21:00 - 22:30</td>
<td>Poster Session 1 in Plaza Ballroom</td>
<td></td>
</tr>
</tbody>
</table>

Monday, September 9

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 - 08:00</td>
<td>SCEC Annual Meeting Registration & Check-In at Hilton Lobby</td>
<td></td>
</tr>
<tr>
<td>07:00 - 08:00</td>
<td>Breakfast at Hilton Poolside</td>
<td></td>
</tr>
</tbody>
</table>
| 08:00 - 11:00 | The State of SCEC
Location: Horizon Ballroom, Hilton Palm Springs
08:00 Welcome and State of the Center (Tom Jordan)
08:30 Report from the National Science Foundation (Greg Anderson)
08:45 Report from the U.S. Geological Survey (Bill Leith)
09:00 Communication, Education, & Outreach (Mark Benthien)
09:30 SCEC Science Accomplishments and Collaboration Plan (Greg Beroza)
11:00 - 11:30 Break | |
| 11:30 - 13:00 | Stress Transfer from Plate Motion to Crustal Faults: Long-Term Fault Slip Rates
Moderator: Kaj Johnson (Indiana)
Location: Horizon Ballroom, Hilton Palm Springs | |
| 13:00 - 14:30 | Lunch at Hilton Restaurant, Tapestry Room, and Poolside | |
| 14:30 - 16:00 | Stress-Mediated Fault Interactions and Earthquake Clustering: Evaluation of Mechanisms
Moderator: Jeanne Hardebeck (USGS)
Location: Horizon Ballroom, Hilton Palm Springs | |
| 16:00 – 17:30 | Poster Session 2 in Plaza Ballroom | |
| 19:00 - 21:00 | SCEC Honors Banquet | |
| 21:00 - 22:30 | Poster Session 3 at Hilton Poolside | |

Tuesday, September 10

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 - 08:00</td>
<td>Breakfast at Hilton Poolside</td>
<td></td>
</tr>
</tbody>
</table>
| 08:00 - 09:30 | Evolution of Fault Resistance During Seismic Slip: Scale-Appropriate Laws for Rupture Modeling
Moderator: Eric Dunham (Stanford)
Location: Horizon Ballroom, Hilton Palm Springs | |
| 09:30 - 11:00 | Structure and Evolution of Fault Zones and Systems: Relation to Earthquake Physics
Moderator: Emily Brodsky (UCSC)
Location: Horizon Ballroom, Hilton Palm Springs | |
| 11:00 - 11:30 | Break | |

Science Session 1 (Monday 11:30)
New paleoseismic data from SoSAFE: time dependency and rupture patterns on the San Andreas and San Jacinto Faults, Kate Schaar (USGS) – see p.10
Beyond the Time-Independent Uniform California Earthquake Rupture Forecast: Where Should SCEC Go From Here? Bill Ellsworth (USGS) – see p.11

Science Session 2 (Monday 14:30)
Recent Results from the Collaboratory for the Study of Earthquake Predictability (CSEP), Max Werner (Princeton) – see p.11
Variable seismic response to fluid injection in central Oklahoma, Katie Keranen (Cornell) – see p.12

Science Session 3 (Tuesday 08:00)
Insights into subduction thrust structure and mechanics from drilling the rupture zone of the 2011 Tohoku-oki earthquake, Fred Chester (Texas A&M) – p.12
Uncovering the Mysteries of Tsunami Generation and Anomalous Seismic Radiation in the Shallow Subduction Zone, Shuo Ma (SDSU) – p.12

Science Session 4 (Tuesday 09:30)
Back to the roots: Ductile shear zones below major faults, and stresses at the bottom of the seismogenic crust, Yuri Fialko (UCSD) – see p.13
Biomarkers heat up during earthquakes: new evidence of seismic slip in the rock record, Heather Savage (LDEO) – see p.13
11:30 - 13:00 Causes and Effects of Transient Deformations: Slow Slip Events and Tectonic Tremor
Moderator: Rowena Lohman (Cornell)
Location: Horizon Ballroom, Hilton Palm Springs

13:00 - 14:30 Lunch at Hilton Restaurant, Tapestry Room, and Poolside

14:30 - 16:00 Seismic Wave Generation and Scattering: Prediction of Strong Ground Motions
Moderator: Jean-Paul Ampuero (Caltech)
Location: Horizon Ballroom, Hilton Palm Springs

16:00 - 17:30 Poster Session 4 in Plaza Ballroom
19:00 - 21:00 Dinner at Hilton Poolside
19:00 - 21:00 SCEC Advisory Council Meeting in Boardroom
21:00 - 22:30 Poster Session 5 in Plaza Ballroom

Wednesday, September 11

07:00 - 08:00 Poster Removal from Plaza Ballroom
07:00 - 08:00 Breakfast at Poolside

08:00 - 09:30 Earthquake Early Warning and Risk Communication
Moderator: Lucy Jones (USGS)
Location: Horizon Ballroom, Hilton Palm Springs

09:30 - 11:00 The Future of SCEC
Location: Horizon Ballroom, Hilton Palm Springs
09:30 2014 Science Collaboration Planning (Greg Beroza)
10:30 Report from the SCEC Advisory Council (Jeff Freymueller)
11:00 Adjourn

11:30 - 13:30 SCEC Planning Committee Lunch Meeting in Palm Canyon Room
11:30 - 13:30 SCEC Board of Directors Lunch Meeting in Tapestry Room

Science Session 5 (Tuesday 11:30)
4D maps of fault aseismic slip obtained through multitemporal InSAR and time-dependent modeling, Manoochehr Shirzaei (ASU) – see p.14

Toward a Continuous Monitoring of the Horizontal Displacement Gradient Tensor Field using cGPS Observations from PBO, Bill Holt (SUNY Stony Brook) – see p.14

Science Session 6 (Tuesday 14:30)
High-frequency rupture dynamics and ground motion prediction, Steve Day (SDSU) – see p.14

Using Ambient Noise Correlations for Studying Site Response, Victor Tsai (Caltech) – see p.15

Science Session 7 (Wednesday 08:00)
Earthquake early warning: Now, or after the next big quake? Richard Allen (UC Berkeley) – see p.15

Setting the stage for early earthquake alerts and warnings, Ann Bostrom (U Washington) – see p.16
Distinguished Speaker Presentation
Sunday

Earthquake Effects on Critical Infrastructure, Tom O’Rourke (Cornell)
Sunday, September 8, 2013 (18:00)

The impact of the Canterbury Earthquake Sequence on the underground infrastructure in Christchurch, NZ is explored with the use of an extraordinary GIS data set covering the effects of both liquefaction-induced permanent ground deformation and transient ground motion for 3 different earthquakes. High resolution LiDAR and geospatial analyses of earthquake-affected utility systems are combined to develop relationships among lifeline damage and both lateral and vertical ground deformation. The earthquake relative performance of different types of pipelines is quantified, and lessons learned from Christchurch for Los Angeles and San Francisco, CA are discussed. To address the need for protection against rare, high consequence events with limited financial resources, a strategy for improving infrastructure resilience is proposed.

Tom O’Rourke is the Thomas R. Briggs Professor of Engineering in the School of Civil and Environmental Engineering at Cornell University. He is a member of the US National Academy of Engineering and a Fellow of American Association for the Advancement of Science. He received a number of distinctions for his research and teaching, some of which are ASTM C.A. Hogeentogler Award, ASCE Collingwood, Huber Research, C. Martin Duke, Stephen D. Bechter Pipeline Engineering, and Ralph B. Peck Awards, and the British ICE Trevithick Prize. He gave the 2009 Rankine Lecture. He served as President of the Earthquake Engineering Research Institute. He authored or co-authored over 350 technical publications. His research interests cover geotechnical engineering, earthquake engineering, underground construction technologies, engineering for large, geographically distributed systems, and geographic information technologies and database management. He served on many national advisory committees, including the NIST Advisory Committee for Earthquake Hazards Reduction, NAE Committee on New Orleans Regional Hurricane Protection Projects, and NSF Engineering Advisory Committee. He currently chairs the ATC 28 Technical Committee supported by NIST to develop national roadmap for lifelines research and implementation. He has served as chair or member of the consulting boards of many large civil construction projects, as well as the peer reviews for projects associated with highway, rapid transit, water supply, and energy distribution systems.

Plenary Talk Presentations
Monday

New paleoseismic data from SoSAFE: time dependency and rupture patterns on the San Andreas and San Jacinto Faults, Katherine M. Scharer (USGS)
Monday, September 9, 2013 (11:30)

The primary focus of the Southern San Andreas Fault Evaluation (SoSAFE) project is to improve the catalogue of ground-rupturing earthquakes on the San Andreas and San Jacinto faults over the last 2000 years. New geologic data from several teams provide exciting constraints on the behavior of these faults, calling into question existing models and revealing differences in the activity of the faults. On the southern San Andreas fault, there are consistent patterns in paleoearthquake records: (1) the average interval between large earthquakes is similar for proximal paleoseismic sites along the fault, although the interval length generally increases to the southeast; and (2) at most sites, ruptures are quasi-periodic and are slightly more consistent with time-dependent behavior, especially when longer records are evaluated. Correlation of records along the southern San Andreas fault reveals intriguing trends that appear to vary by section: the Carrizo and Big Bend sections have very similar records since ca. 1300 AD, but these differ significantly from the southern end of the Mojave section. Recent excavations on the San Gorgonio Pass fault zone do little to untie the San Gorgonio knot, as ruptures there are far less common than earthquakes on either side, suggesting complex and infrequent rupture patterns through the Pass are the norm. On the San Jacinto fault, new, long paleoseismic records show little time-dependent behavior, and the mismatch in rupture timing on the Clark and Claremont strands suggests that many ruptures do not extend along its entire length. Taken together, the extant data may indicate that by a factor of about three, 200-300-km long ruptures are more common than >300-km, “1857-type” ruptures on the San Andreas fault and <100 km long ruptures are more common than full fault ruptures on the San Jacinto fault. Validation of these conclusions is needed, and can be achieved by the development of high-resolution records between existing sites. Additional insight can be gained from short term slip rates and geomorphic records of slip, especially where the latter can be paired with geochronologic control.

Beyond the Time-Independent Uniform California Earthquake Rupture Forecast: Where Should SCEC Go From Here? William L. Ellsworth (USGS)
Monday, September 9, 2013 (12:15)
The time-independent Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) represents a major accomplishment of the SCEC community. The UCERF3 forecast integrates our current understanding of the geology, geodesy and geophysics of the San Andreas Fault system into a comprehensive, system-level framework that will guide public policy and earthquake risk reduction activities for years to come. This was truly a center-wide effort, with well over 100 members of the community actively involved in the research, development, implementation, testing, and review of everything from the numerous component parts (20 appendices for starters) to the hazard implied by the model. As with any successful study of this magnitude, it exposed gaps in our understanding of how both earthquakes and fault systems work, uncovered conflicts between fundamental data sets that describe the system, revealed needs for more and better empirical measurements, and underscored the value of theoretical advances for improving our models. In short, there is much important science yet to be done. In this talk, I will highlight some of the key issues identified by the Scientific Review Panel for UCERF3 through its review meetings, project workshops and outreach activities to the broader community of earthquake professionals. Many of these questions and new directions are also shared by members of the Working Group. A sample of frequently mentioned issues includes:

- Will the UCERF3 model pass a Regional Earthquake Likelihood Model test?
- Does the Grand Inversion span the epistemic uncertainty in hazard?
- Are fault-to-fault jumps as prevalent in nature as modeled in UCERF3?
- The Grand Inversion represents a big step forward – but solutions to the equation set are highly non-unique. Can solutions be more tightly constrained?
- Initial attempts to solve the Grand Inversion with individual faults obeying Gutenberg-Richter statistics failed. Are G-R models possible?
- The discrepancies between geologic and geodetic deformation models must be telling us something important about the loading of the fault system. What is it?
- Scaling laws play a central role in UCERF3. Can we replace them with physics-based models?
- Many see physics-based fault simulators as the future. When will we be ready to move them from research tools to instruments of public policy?

Recent Results from the Collaboratory for the Study of Earthquake Predictability (CSEP), Maximilian J. Werner (Princeton)
Monday, September 9, 2013 (14:30)

The Collaboratory for the Study of Earthquake Predictability (CSEP, www.cseptesting.org) provides a research infrastructure for the prospective, automated and independent assessment of earthquake forecasts and predictions in a variety of tectonic settings and on a global scale. The first testing center, the W.M. Keck Testing Center at SCEC, was launched in 2007 to conduct the first ever prospective and comparative earthquake forecasting experiment: the Regional Earthquake Likelihood Models (RELM) experiment, conceived by the USGS and SCEC to create and assess a suite of five-year earthquake forecasts for California. Since then, three more testing centers have been established in New Zealand, Europe, and Japan, and more are in development. Collectively, these centers are evaluating over 350 forecast models that are based on a wide variety of hypotheses about where, when and why earthquakes occur. In this presentation, I will review recent achievements of the global CSEP community and highlight recent results from California and from around the globe.

I will begin with results from the completed RELM experiment, which has led to important advances in our understanding of how intermediate-term probabilistic forecasts should be specified and assessed. RELM results are also being utilized to refine seismic hazard estimates in the most recent version 3 of the Uniform California Earthquake Rupture Forecast (UCERF). Meanwhile, CSEP’s short-term predictability program is gaining insights into tracking and forecasting earthquake cascades, such as the 2010 Canterbury and the 2011 Tohoku sequences. The greater predictability of earthquakes during such periods appears ripe for use in Operational Earthquake Forecasting (OEF), and CSEP is increasing efforts to support OEF by government agencies by independently assessing the performance of candidate OEF models. Other ongoing CSEP activities I will present include developing capabilities to import and evaluate external forecasts and predictions that are produced outside of CSEP’s cyber-infrastructure. Prototype experiments include seismicity-based algorithms such as the well-known M8 predictions, as well as predictions based on electromagnetic precursors. I will conclude with future opportunities and challenges in the study of earthquake predictability.

Variable seismic response to fluid injection in central Oklahoma, Katie M. Keranen (Cornell), Heather Savage (LDEO), Geoffrey Abers (LDEO), & Nicholas van der Elst (LDEO)
Monday, September 9, 2013 (15:15)
Seismicity within the past 5 years in Oklahoma has been concentrated in a region of historically low seismicity, in the central portion of the state near the towns of Jones, Prague, and Luther. From 2009-2013, ~75% of earthquakes from the Oklahoma Geological Survey catalog occurred in this central region (3035 earthquakes), including the largest earthquake recorded in Oklahoma and the largest anywhere potentially related to wastewater disposal, an Mw5.7 in November 2011 near Prague, OK. Precise relocations of aftershocks show that the tip of the initial rupture plane near Prague is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Importantly, the Prague region showed enhanced remote triggering following the Mw8.8 Chile earthquake in 2010 – a phenomenon also observed at other sites of induced seismicity in the Midwest in 2010 and 2011. This enhanced triggering provides additional evidence that fluid pressures were nearing critical levels as the volume of injected fluid increased after 18 years of injection. We interpret that the net fluid volume increase near Prague lowered effective stress on reservoir-bounding faults. Near Jones and Luther, OK, earthquakes began soon after the onset of injection; near Jones the earthquakes delineate multiple subparallel faults updip of high-volume wastewater disposal wells while near Luther the earthquakes define a primary fault plane. There are commonalities in the methods used for petroleum extraction from carbonate reservoirs in central Oklahoma, involving the production of high water volumes, which speculatively may explain the abundance of induced earthquakes recorded here. The differences in the timing of the Prague, Jones, and Luther sequences with respect to injection, and in the spatial distribution of seismicity, highlight the variability in seismic responses to fluid injection and deviations from historically important case studies.

Uncovering the Mysteries of Tsunami Generation and Anomalous Seismic Radiation in the Shallow Subduction Zone, Shuo Ma (SDSU)

Tuesday, September 10, 2013 (08:45)

The Japan Trench convergent margin produces frequent large interplate earthquakes greater than M7.5, and is known to display the primary characteristics of non-accretionary margins. The 2011 Mw 9.0 Tohoku-oki earthquake demonstrates the capability of this margin to rupture the full extent of the seismogenic zone and updip to the trench axis in a single great event. A variety of observations indicate that the slip magnitude of this rupture increased towards the trench, with 50+ m of slip occurring at the ~20-km-wide frontal prism of accreted sediments and lower trench slope. The Integrated Ocean Drilling Program expedition 343/343T (JFAST) was designed to address fundamental questions of earthquake physics through rapid-response drilling. The JFAST drill site is located 6 km landward from the trench axis; three boreholes were drilled through the prism and across the plate-boundary. Data from seismic surveys, logging while drilling, and lithologic and structural observations of core samples document a single dominant decollement that accommodated almost all of the interplate displacement (~3.2 km) at the drill site. The decollement is located in sheared pelagic clay near the base of the incoming sediment section of the subducting plate. The localization of interplate displacement to a single narrow layer of scaly clay and to surfaces within the clay indicate the decollement is relatively weak over geologic time. Borehole measurements of temperature across the plate boundary confirm the Tohoku earthquake ruptured the decollement and, consistent with results of high-speed friction experiments on sheared clay, that the decollement is extremely weak during seismic slip. These results, combined with borehole data indicating that the current in situ stress is approximately lithostatic, support the hypothesis that dynamic weakening of wet clay at seismic slip rates favor earthquake rupture propagation to shallow depths even though the frictional properties of wet clay at low slip rates prohibit the nucleation of slip instabilities. Ongoing analysis of JFAST borehole data combined with microstructural and experimental studies of recovered core samples will contribute to a more complete understanding of the frictional behavior and the physical mechanisms associated with dynamic weakening needed to advance models of earthquake rupture along subduction thrusts.

Plenary Talk Presentations

Tuesday, September 10, 2013 (08:00)

Insights into subduction thrust structure and mechanics from drilling the rupture zone of the 2011 Tohoku-oki earthquake, Frederick M. Chester (Texas A&M)

The Japan Trench convergent margin produces frequent large interplate earthquakes greater than M7.5, and is known to display the primary characteristics of non-accretionary margins. The 2011 Mw 9.0 Tohoku-oki earthquake demonstrates the capability of this margin to rupture the full extent of the seismogenic zone and updip to the trench axis in a single great event. A variety of observations indicate that the slip magnitude of this rupture increased towards the trench, with 50+ m of slip occurring at the ~20-km-wide frontal prism of accreted sediments and lower trench slope. The Integrated Ocean Drilling Program expedition 343/343T (JFAST) was designed to address fundamental questions of earthquake physics through rapid-response drilling. The JFAST drill site is located 6 km landward from the trench axis; three boreholes were drilled through the prism and across the plate-boundary. Data from seismic surveys, logging while drilling, and lithologic and structural observations of core samples document a single dominant decollement that accommodated almost all of the interplate displacement (~3.2 km) at the drill site. The decollement is located in sheared pelagic clay near the base of the incoming sediment section of the subducting plate. The localization of interplate displacement to a single narrow layer of scaly clay and to surfaces within the clay indicate the decollement is relatively weak over geologic time. Borehole measurements of temperature across the plate boundary confirm the Tohoku earthquake ruptured the decollement and, consistent with results of high-speed friction experiments on sheared clay, that the decollement is extremely weak during seismic slip. These results, combined with borehole data indicating that the current in situ stress is approximately lithostatic, support the hypothesis that dynamic weakening of wet clay at seismic slip rates favor earthquake rupture propagation to shallow depths even though the frictional properties of wet clay at low slip rates prohibit the nucleation of slip instabilities. Ongoing analysis of JFAST borehole data combined with microstructural and experimental studies of recovered core samples will contribute to a more complete understanding of the frictional behavior and the physical mechanisms associated with dynamic weakening needed to advance models of earthquake rupture along subduction thrusts.
Motivated by the critical taper theory for accretionary wedges (e.g., Davis et al., 1983; Dahlen, 1990), I will show that for a wedge on the verge of failure, pore pressure increase due to updip rupture causes extensive Coulomb failure within the wedge, which gives rise to slow rupture velocity and significant seafloor uplift landward from the trench (Ma, 2012; Ma and Hirakawa, 2013). During the rupture propagation the large inelastic seafloor uplift strongly dilates the shallow-dipping basal fault behind the rupture front, greatly enhanced by the presence of free surface. The dilation reduces the effective normal stress and sliding friction on the fault, and increases the dynamic stress drop and slip velocity, such that slip-velocity time histories in the shallow section of the fault tend to have a “snail-like” shape, leading to a smooth source time function and depletion of high frequencies in seismic radiation. I will also show that the failure in the wedge acts as a large energy sink (while contributing to seismic moment), giving rise to distributed heat generation (i.e., small heat flow anomaly across the fault), low moment-scaled radiated energy and small rupture directivity, which thus provides a unifying interpretation for nearly all anomalous observations documented for shallow subduction earthquakes. Finally I will discuss possible implications of a critically stressed crust for the dynamics of fault system in southern California.

Back to the roots: Ductile shear zones below major faults, and stresses at the bottom of the seismogenic crust, Yuri Fialko (UCSD)

Tuesday, September 10, 2013 (09:30)

The degree to which strain is localized in the ductile part of the lithosphere below seismogenic faults is an outstanding issue in continental tectonics. Two classes of models have been proposed: one postulating a broadly distributed viscous deformation in the lower crust and upper mantle (the “thin lithosphere” model), and another one postulating localized shear well below the brittle-ductile transition (the “thick lithosphere” model). Understanding the mechanics of lithospheric shear zones is essential for a number of problems, including the long-term strength of the Earth’s crust and upper mantle, stress transfer from the relative plate motion to seismogenic faults, and, ultimately, seismic hazards. We investigate the evolution of stress and strain in a ductile substrate driven by far-field plate motion and fault slip. Numerical models that incorporate laboratory-derived power-law rheologies with Arrhenius temperature dependence, viscous dissipation, and conductive heat transfer give rise to the long-lived fault “roots” that localize deformation below the brittle-ductile transition. Strain localization in the viscoelastic medium in this case results from thermomechanical coupling and power law dependence of strain rate on stress. For conditions corresponding to the San Jacinto and San Andreas Faults in Southern California, the predicted width of the shear zone in the lower crust is a few kilometers; this shear zone takes up more than 50% of the far-field plate motion. Deviatoric stress in the lithosphere in our models is relatively insensitive to the water content, the far-field loading rate, and the fault strength, and is of the order of 100 MPa. Furthermore, stress in the lithosphere is found to inversely correlate with the velocity of relative plate motion. We also find that the thermally-activated shear zones have little effect on postseismic transients. It follows that additional (to thermomechanical coupling) mechanisms of strain localization are required for a viscoelastic model to produce a vertical deformation pattern similar to that due to afterslip on a deep extension of a fault. Possible candidates include dynamic grain recrystallization, and fabric development (mylonitization). Realistic models of long-term deformation informed by the experimentally determined ductile properties of rocks may provide useful constraints on the magnitude of deviatoric stress at the bottom of the seismogenic layer (the nucleation zone of large earthquakes).

Biomarkers heat up during earthquakes: new evidence of seismic slip in the rock record, Heather M. Savage (LDEO), Pratigya J. Polissar (LDEO), Rachel E. Sheppard (LDEO), Hannah S. Rabinowitz (Columbia), Christie D. Rowe (McGill), James D. Kirkpatrick (Colorado State), and Emily E. Brodsky (UCSC)

Tuesday, September 10, 2013 (10:15)

Evidence of earthquake slip in fault zones has proven somewhat elusive in the rock record. Here we describe a new method that uses the thermal maturity of biomarkers to identify and measure the temperature rise on faults caused by frictional sliding at earthquake slip rates. We have applied our method to several faults, including Pasagshak Point megathrust, AK; Japan Trench at the site of IODP Exp.343 JFAST; and Punchbowl Fault, CA. The Pasagshak Point megathrust hosts large pseudotachylytes (frictional melts), making it the ideal place to test the concept that biomarkers react on earthquake timescales. We find that biomarkers within the pseudotachylyte are the most thermally mature, and that thermal maturity decays rapidly away from pseudotachylyte strands. These results show that biomarkers do record the frictional heating that occurred during earthquakes. Other faults, which do not show evidence of frictional heating and organic maturation, may be sites where coseismic temperature rise was low. In addition to our field studies, we conducted rapid heating experiments to establish the kinetic reaction rates of different biomarkers,
in order to place constraints on temperature rise. Our results have allowed us to estimate, in various cases, frictional work, maximum fault slip and friction during sliding.

4D maps of fault aseismic slip obtained through multitemporal InSAR and time-dependent modeling. Manoochehr Shirzaei (ASU)

Tuesday, September 10, 2013 (11:30)

Studies of large-scale, time-dependent fault slip have been limited, due to the sparse distribution and frequency of deformation measurements. InSAR observations have been an important addition for nearly two decades. The continually growing SAR data set allows detecting more subtle and longer-term variations from the secular deformation rates. Time-variable slip affects hazard estimates in three ways; 1) it changes the estimate of a fault’s slip budget, 2) it introduces changes in stress rate on individual fault segments that could have consequences for earthquake timing, and 3) characterizing the kinematics of time variable fault slip leads to better constraints on earth structure and fault frictional parameters. Here, I present new advances in the field of InSAR time series including, multitemporal single- and multi-track InSAR as well as multi-sensor-multitemporal InSAR. These new algorithms allows resolving the high precision time series of the surface deformation using data acquired from a single track or two overlapping tracks of same satellite or multiple ascending and descending tracks of different satellites. Wavelet transforms are the main component of these algorithms for pixel selection and filtering. Through a time-dependent inversion scheme and in combination with GPS and repeating earthquakes, the InSAR deformation time series is used to obtain the 4D map of the creep on the Hayward fault. This map includes a zone of high slip deficit that may represent the locked rupture asperity of past and future M=7 earthquakes. It also comprises the source areas of the February 1996 and July 2007 slow-slip events. Moreover, the map identifies several additional temporal variations in creep rate along the Hayward fault, the most important one being a zone of accelerating slip just to the northwest of the major locked zone. The fault creep imparts stress on the major locked zone at a rate of ~0.003 MPa/yr in addition to the background loading rates. Using this map I estimate that slip-rate deficit equivalent to Mw 6.3-6.8 has accumulated on the fault, since the last event in 1868. The probability of major earthquakes can be affected by the imparted stress from the recent earthquakes and the fault creep transients. I estimate that the 1-day probability of a large event on the Hayward increased by up to 50% due to the July 2007 south Oakland event (Mw4.2), highlighting the importance of short-term probability changes due to transient stress changes.

Toward a Continuous Monitoring of the Horizontal Displacement Gradient Tensor Field using cGPS Observations from PBO. William E. Holt (SUNY Stony Brook) and Gina Shcherbenko (SUNY Stony Brook)

Tuesday, September 10, 2013 (12:15)

We have developed a cGPS network-processing tool for detection of anomalous strain transients within the Plate Boundary Observatory network in southern California. Position estimates from cGPS are interpolated (through a joint inversion of strains and position estimates) to provide a model solution for the horizontal displacement gradient tensor field as a function of time. Regularization of the solution is achieved by adjusting a single isotropic strain variance parameter until the reduced chi-squared misfit between model and observed displacement approaches 1.0. Additional constraints are provided by a priori information on fault style and orientation, along with the application of Pacific-North America displacement boundary conditions. A geodetic reference solution is subtracted from the epoch solution and the significance of residual strains is tested using a t-statistic. Tests using synthetic cGPS observations, generated in the SCEC IV Transient Detection Exercise, show that anomalous strains associated with slow-slip over 6-8 week time frames, totaling less than 1 cm, can be detected with high confidence (assuming uncertainties in daily positions estimates of ± 3 mm). Analysis of PBO cGPS time series since July 2010 shows a complex field of significant anomalous strain within southern California primarily associated with post-seismic processes. Interesting and characteristic patterns of anomalous crustal strain, generated during the ETS slow slip events, have also been quantified for the different sections of the Cascadia subduction zone.

High-frequency rupture dynamics and ground motion prediction. Steven M. Day (SDSU)

Tuesday, September 10, 2013 (14:30)

Empirical ground motion prediction is a relatively mature science and may in some respects be subject to diminishing returns. This situation has given impetus to the development and application ground motion simulation methods to address outstanding generic ground motion issues as well as site-specific issues. Simulations based on simplified wave propagation models and kinematically specified sources contain tuning parameters that can be calibrated to shape the ground motion spectrum to match observations, but these parameters frequently do not have a well-established physical interpretation. Thus, these methods have the advantage that they directly encode
observational information, but the disadvantage that they provide minimal physical basis from which to extrapolate beyond the data to which they have been calibrated. On the other hand, dynamic rupture models start from well-defined physical models, but until recently have lacked the model complexity and resolution required to test their validity through meaningful comparisons with strong motion data at frequencies beyond about 1 Hz.

However, it is now possible to simulate dynamic rupture and ground motion for large (M > 7) earthquakes, in 3D, while resolving frequencies up to greater than 10 Hz, over source-receiver distances of several tens of kilometers. This capability permits ground motion from rupture simulations to be tested quantitatively against strong motion observations over much of the frequency and distance range of engineering interest. Simulations (e.g., Dunham et al., 2011; Shi and Day, 2013) suggest that the departure of natural fault surfaces from planarity, i.e., fault roughness, is an essential element in the generation of high-frequency ground motion. Rupture models that incorporate power-law roughness, even though very oversimplified in other respects (notably the initial stress state) predict ground motion with many of the qualitative features of recorded ground motion. Synthetic spectral accelerations from such simulations in 3D, once averaged to remove random site and path variations, show a remarkable degree of quantitative agreement with the corresponding spectral averages from recorded strong motion data. These results are promising, but preliminary and still of limited scope, and I will discuss some of the more notable limitations, as well as some possible pathways for future research.

Using Ambient Noise Correlations for Studying Site Response, Victor C. Tsai (Caltech), Fan-Chi Lin (Caltech), and Daniel C. Bowden (Caltech)

Tuesday, September 10, 2013 (15:15)

Over the last decade, there has been an explosion in the number of studies using ambient noise cross correlations to perform surface-wave travel-time tomography. However, there have only been a limited number of successful applications using ambient noise correlation amplitudes, partly due to the difficulty in interpreting these amplitudes given realistic distributions of ambient noise. Here, we discuss two complementary methods we are developing to overcome some of these issues and which allow us to use noise correlation amplitudes to constrain site response.

The first method is an extension of the array-based Helmholtz wavefield estimator to analyze surface-wave amplitudes. With this new method, spatial differential operators are applied to surface-wave travel-time and amplitude maps to account for focusing effects and directly estimate the site response at each station. Theoretical considerations show that the method works for an arbitrary incoming wavefield and is not affected by noise field directionality. However, the method still assumes that noise sources within the array are weak, and can potentially also be biased by small-scale scattering. Applying the method to noise measured by southern California arrays, including the densely spaced 5000-component Long Beach array, leads to promising results.

The second method is an extension of the classical horizontal-to-vertical (H/V) ratio method to multi-station cross correlations. The classical method uses a single station’s ambient-noise H/V spectral ratio to estimate the local site structure. While it has been successfully applied in many studies, there remain questions about how to best interpret these H/V observations. In contrast, cross-correlation H/V measurements have a straightforward interpretation in terms of Rayleigh-wave ellipticity. Correlation H/V ratios have the added benefit that multiple measurements can be made by varying the second station, leading to more robust estimates and the ability to constrain azimuthal variations of site response. The approach also has the nice feature that each station’s noise data can be normalized independently without affecting the H/V measurement whereas other amplitude-based correlation methods are highly affected by station normalization. Application to low-frequency (8-30 second) USArray data suggests that the method works as expected.

Plenary Talk Presentation

Wednesday

Earthquake early warning: Now, or after the next big quake? Richard M. Allen (UC Berkeley)

Wednesday, September 11, 2013 (08:00)

The science and technology behind earthquake early warning has developed rapidly over the last 5 years. The 2011 M9 Tohoku-Oki earthquake was the first major test of Japan’s public alert system. Alerts were issued successfully in the epicentral region, but the extent of the source was not recognized, resulting in the warnings not being as widespread as they should have been. In California we now have a demonstration system delivering alerts to test users, and this system is currently being extended to the Pacific Northwest. Research is also underway to better characterize large earthquake ruptures--using seismic and geodetic observation networks--and integrate this information into existing point-source systems. Test users are receiving alerts and developing protocols for taking actions. Some responses have already been automated, including stopping the
BART trains in the Bay Area. Legislative activity in Sacramento and Washington DC is also moving us closer to funding a public warning system. In this talk I will summarize the status of this community effort, and argue that the implementation of a public early warning system is now inevitable. The only question is whether there will be the political will to do this before, or immediately following the next big earthquake.

Setting the stage for early earthquake alerts and warnings, Ann Bostrom (U Washington) and John Vidale (U Washington)

Wednesday, September 11, 2013 (08:45)

Early earthquake warning (EEW) systems hold great promise. The few EEW systems deployed around the world have helped prevent and mitigate damage from earthquakes. While the technologies to detect threats, their reliability, and the length of time needed to achieve accuracy in forecasts and predictions in EEW are important factors in achieving this, equally important are how EEW rely on human mediation; channels for issuing warnings; familiarity and institutionalization of warning procedure; settings in which systems are used; and system goals and objectives. In other words, how early earthquake alerts and warnings are interpreted and what actions people take in response to them depend on cognitive, emotive, social and institutional contexts, as well as on their natural and built environment. A key lesson from prior research on hazard warnings is that people need actionable information on what to do, not just that there is a threat. With seconds to minutes of lead time, accomplishing this will require setting the stage for action by working with communities and institutions to develop goals, procedures, and expectations.
Sunday, September 8, 2013
21:00 – 22:30 Poster Session 1

Monday, September 9, 2013
16:00 – 17:30 Poster Session 2
21:00 – 22:30 Poster Session 3

Tuesday, September 10, 2013
16:00 – 17:30 Poster Session 4
21:00 – 22:30 Poster Session 5

POSTER PRESENTATIONS View full abstracts at www.scec.org/meetings/2013am

Earthquake Geology

001 The Search for a Paleotsunami Record in the Coastal Wetlands of Southern California: A Progress Report, Brady P. Rhodes, Matthew E. Kirby, and Robert J. Leeper

002 A Potential Paleotsunami Shell-Hash layer from the Los Penasquitos Marsh, San Diego County, California, Jeremy Cordova, Brady Rhodes, Matt Kirby, Nicole Bonuso, and Robert Leeper

003 Does Evidence of Abrupt Coseismic Subsidence and Tsunami During the Late Holocene Exist in Seal Beach Marsh Stratigraphy? Robert J. Leeper, Brady P. Rhodes, Matthew E. Kirby, Katherine M. Scharer, D’Lisa O. Creager, and Dylan J. Garcia

004 Paleotsunami Research at the Seal Beach Wetlands, Seal Beach, California, Disco O. Creager, Brady P. Rhodes, Matthew E. Kirby, and Robert J. Leeper

006 Holocene folding deformation associated with large uplift events on the Ventura Avenue Anticline, Gulsen Ucaruskus, Neal Driscoll, Daniel Brothers, Graham Kent, and Thomas Rockwell

007 Late-Quaternary evolution of the eastern Sierra Madre Fault Zone in the San Gabriel Valley, southern California, Jerome A. Treiman

008 The Agua Tibia-Earthquake Valley Fault Zone: reorganization of tectonic slip between the northern Elsinore and southern San Jacinto fault zones, Erik M. Gordon, Thomas K. Rockwell, and Gary H. Girty

009 Pleistocene offset and constraints on the South Bristol Mountains Fault, eastern Mojave Desert, Janet C. Harvey and Joann Stock

010 New investigations of the October 1999 Hector Mine Earthquake surface rupture, Frank J. Sousa, Janet C. Harvey, Ken W. Hudnut, Sinan O. Akciz, and Joann M. Stock

011 Assessing the variability in strain accumulation and release through time along the Central Garlock fault: results from a new late Holocene slip rate, Lee M. McAuliffe, James F. Dolan, Ed Rhodes, and Sally F. McGill

012 New structures from the southern tip of the San Andreas fault zone near Durum Hill, Susanne U. Janecke and Daniel Markowski

013 Evolution of the Puente Hills Thrust Fault, Kristian J. Bergen, John H. Shaw, and James F. Dolan

014 Scarp degradation of the 2010 El Mayor-Cucapah surface rupture captured by annual t-lidar surveys, Austin J. Elliott, Michael E. Oskin, Peter O. Gold, Alejandro Hinojosa-Corona, Richard Styrön, and Michael H. Taylor

015 Rapid, decimeter-resolution fault zone topography from Structure-from-Motion (SIM), Kendra Johnson, Edwin Nissen, J. Ramon Arrowsmith, Srikanth Saripalli, Patrick McGarey, Katherine Scharer, and Patrick Williams

016 How well do surface offsets represent earthquake slip at depth? David E. Haddad, Olaf Zielke, and Ramon Arrowsmith

017 Tectonic geomorphology of the San Timoteo Badlands: New insights from OSL and LiDAR data, Cary S. Wicker

018 Origins of Variability in Fault-Rupture Slip Measurements: Comparison of Field Observations to Airborne, Differential, and Terrestrial LiDAR from the 2010 El Mayor-Cucapah Earthquake, Michael Oskin, Jaime Delano, Divya Banesh, Alejandro Hinojosa, Craig Glennie, and Austin Elliott

Cosmogenic exposure dating of paleo-rockfall deposits, Chrstchurch, New Zealand, Ben H. Mackey and Mark C. Quigley

Development of new chronological approaches for dating sediment using IRSL of K-feldspar single grains, Edward J. Rhodes, Michael J. Lawson, Wendy Barrera, Jillian TM. Daniels, Nathan D. Brown, Chris McGuire, Tomas Capaldi, Steve Okubo and Evan Wolf

Organic thermal maturity as a proxy for frictional fault heating: experimental constraints on biomarker kinetics at earthquake timescales, Rachel E. Sheppard, Pratigya J. Polissar, and Heather M. Savage

Rheological controls on the seismicity and fault zone structure of oceanic transform faults, Arjun H. Kohli, Jessica M. Warren, and Mark Zimmerman

Textural recognition of shallow pulverization of sandstone in the damage zone along the San Jacinto fault, southern California, Joe Whearty, Thomas Rockwell, and Gary Girty

The Importance of Glacial-Isostatic Adjustment in Determining Rates of Crustal Deformation along the Pacific Coast of the USA and Mexico, Alexander R. Simms and Kurt Lambeck

2013 SCEC Annual Meeting | 17
Southern San Andreas Fault Evaluation (SoSAFE) Posters 025-036

025 Documenting at least 1300 years of aseismic slip: en-echelon shear bands and small-scale ground cracking at the Dry Lake Valley Paleoseismic site along the central San Andreas Fault, Nathan A. Toké, J. Barrett Salisbury, J Ramón Arrowsmith, Lawrence T. Kellum, Ephram Matheson, J. Kade Carlson, Daniel Horns, Tsuruie Sato, Nicole Abueg, James Anderson and Jeff Selck

026 Refining the South-Central San Andreas Fault Slip Rate at the 6 ka Timescale: Phelan Creeks, James B. Salisbury, Emily Kleber, Sinan Akciz, Ramon Arrowsmith, Gayatri Marliyani, Lisa Grant Ludwig, and Daniel Halford

027 Mobile Laser Scanning for Earthquake Studies and Rapid Response, Benjamin A. Brooks, Ken Hudnut, Sinan Akciz, Katherine M. Scharer, Jaime Delano, Craig Glennie, Darren Hauser, Carol Prentice and Stephen DeLong

028 Paleoequation evidence at the Elizabeth Lake paleoseismic site, Mojave section of the San Andreas fault, California, Sean P. Bemis, Kate Scharer, James Dolan, Alexandra Hatem, Chris Milliner, Ann Hislop, Corey Burkett, Mary Barr and Ryan Witkosky

029 Implications for San Andreas fault ruptures based on new evidence from the Cabazon, CA paleoseismic site, San Gorgonio Pass Fault Zone, Katherine Scharer, Doug Yule, Lisa Wolff, and Ryan Witkosky

030 Evidence for five paleoearthquakes on the San Gorgonio Pass Fault Zone in the last 6000 years, Lisa R. Wolff, Doug Yule, Katherine Scharer, Ryan Witkosky, Ian Desjarlais, and Brittany Huerta

031 Paleoearthquakes and slip rate of the Garnet Hill Fault at Whitewater Hill, Jose E. Cardona

032 New geological slip rate estimates for the Mission Creek strand of the San Andreas fault zone, Kimberly D. Blisniuk, Katherine Scharer, Warren D. Sharp, Roland Bürgmann, Michael J. Rymer, and Patrick Williams

033 The interplay of fault geometry and uplift in the Coachella Valley and Mecca Hills, Laura A. Fattaruso, Michele L. Cooke, and Rebecca J. Dorsey

034 A High Resolution Lake Cahuilla Chronology to Constrain Earthquakes on the Southern San Andreas System, Erik Haaker, Nicholas Weldon, Ray Weldon, and Thomas Rockwell

035 Shallow velocity structure in the Imperial Valley region of Southern California, Yiran Ma, Joann M. Stock, John A. Hole, and Gary S. Fuis

036 Cascading Disaster Assessment for the ShakeOut Earthquake Scenario, Erin R. Burkett

Tectonic Geodesy

037 Vital Signs of the Planet: Southern California Educators Contribute to Crustal Deformation Studies Within San Bernardino and Riverside Counties, Mark Kline, Sally McGill, Mark Swift, Alfonso Barrientos, Sandy Calonge, Helen Connal-Bonner, Robert de Groot, Rhonda Fuller, Adrian Gamez, Paul Gonzales, Kristen Holland, Dan Keck, Guadalupe Rowley, Bernadette Vargas, Jerry Young, Joshua Spinler, Rick Bennett, Mike Floyd and Gareth Funning

038 NSF-PRISM Scholars Use GPS to Investigate Fault Slip Rates in Southern California, Lowell Andrew R. Iporac, Isabella Benitez, Karmina Diaz, Marlene Noriega, Vanessa Vega, Sally McGill, Joshua Spinler and Rick Bennett

039 Using GPS to Investigate Slip Rates on Faults along the Plate Boundary near San Bernardino, CA, Walter W. Nelson, Sally F. McGill, Joshua C. Spinler, Rick A. Bennett, Michael Floyd, and Gareth J. Funning

040 Results from the San Bernardino Mountains GPS network: velocities of sites in the vicinity of the San Andreas fault in Southern California, Barry Chew, Sally McGill, Josh Spinler, Rick Bennett, Mike Floyd, and Gareth Funning

041 Status of GPS Network Operations at USGS Pasadena, Daniel N. Determan, Aris G. Aspiotes, Ken W. Hudnut, Nancy E. King, and Keith F. Stark

042 Does the slip rate of the San Jacinto fault vary along strike? Constraints from campaign GPS data, John P. Conrad and Gareth J. Funning

043 New Constraints on the Active Tectonics of Southern California Revealed by Cluster Analysis of GPS Velocities, Wayne Thatcher, James C. Savage, and Robert W. Simpson

044 GPS as a high resolution technique for evaluating water resources available to California, Donald F. Argus, Yuning Fu, and Felix W. Landerer

045 Integrating InSAR and GPS data to measure crustal deformation: insights on resolution from sensitivity tests, Chelsea P. Scott and Rowena B. Lohman

046 Image Southern California crustal deformation from InSAR time series analysis, Zhen Liu, Paul Lundgren, and Zheng-Kang Shen

047 An Integrated InSAR and GPS Study of Interseismic Deformation at the Nicoya Peninsula, Costa Rica, Lian Xue, Susan Schwartz, and Zhen Liu

048 Investigating earthquake self-similarity using a 20-year catalog of source parameters derived from InSAR data, Gareth J. Funning, Ana M. Stock, Jennifer M. Weston, and Hannah Bloomfield

049 Seamless Synthetic Aperture Radar Archive for Interferometry Analysis, Scott Baker, Gwen Bryson, Brian Buechler, Charles Meertens, Chris Crosby, Eric Fielding, Jeremy Nicoll, Choonhan Youn, and Chaitanya Baru

051 Geodetic Imaging for Science and Decision Support, Andrea Donnellan, Jay W. Parker, Margaret T. Glasscoe, Marion Pierce, Jun Wang, and John Rundle

052 Interseseismic strain localization in the San Jacinto fault zone, Eric O. Lindsey, Valerie J. Sahakian, Yuri Fialko, Yehuda Bock, Sylvia Barbot, and Thomas K. Rockwell

053 Strain-Rate Changes Triggered by Local and Regional Earthquakes? Strainmeter Observations in the Anza Section of the San Jacinto Fault, Duncan C. Agnew, Frank K. Wyatt, Billy Hatfield, and Kathleen Hodgkinson

054 Modeling strains associated with fluid extraction, Andrew J. Barbour, Duncan C. Agnew, and Frank K. Wyatt

055 Fault coupling and potential for earthquakes on the creeping section of the Central San Andreas Fault, Jeremy L. Maurer, Kai Johnson, and Paul Segall

056 Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System? Xiaopeng Tong, Bridget Smith-Konter, and David Sandwell

058 Extremely Shallow Extensional Faulting Near Geothermal Fields, Kenneth W. Hudnut, Shengji Wei, Andrea Donnellan, Eric J. Fielding, Robert W. Graves, Donald V. Helmberger, Zhen Liu, Jay W. Parker and Jerome A. Treiman
Seismology

067 An Analysis of the Aftershocks from the 2011 Oklahoma Earthquake Sequence, Marius P. Isken

068 The search for repeating earthquakes in the northern San Francisco Bay area, Nader Shakibay Senobari and Gareth J. Funning

069 A Finite Difference Method for Earthquake Cycles in Heterogeneous Media: Alternating Sub-basin and Surface-rupturing Events on Faults Crossing a Sedimentary Basin, Brittany A. Erickson and Eric M. Dunham

070 SeisSol: The ADER-DG method for seismic wave propagation and earthquake rupture dynamics, Christian Pelties, Alice Gabriel, Luca Passone, Alex Breuer, Sebastian Rettenberger, and Atanas Atanasov

071 Application of supervised neural network meta-attributes to 3D seismic data for detection and visualization of shallow faults and fluid flow pathways offshore southern Costa Rica, Stephanie Nale, Jared W. Kluesner, Eli Silver, Nathan L. Bangs, and Kirk D. McIntosh

072 The equake-rc online platform, Paul M. Mai and Kian K. Thingbaijam

073 Geometry Of The San Andreas Fault In The Salton Trough And Its Effect On Simulated Shaking For A Rupture Similar To That Of The Great California Shakeout Of 2008, Gary S. Fuis, Klaus Bauer, Robert W. Graves, Brad Aagaard, Rufus D. Catchings, and Mark R. Goldman

074 Constraining ground motion parameters and determining the historic earthquake that damaged the vaults underneath the Old City of Jerusalem, Gony Yagoda-Biran and Yossef H. Hatzor

075 Spatio-temporal evolution of seismic clusters in southern and central California, Ilya Zaliapin and Yehuda Ben-Zion

076 Exploring finite-slip inversion with near-field seismic data: Analysis of the 2004 Parkfield earthquake, California, Wen-yuan Fan, Peter M. Shearer, and Peter Gerstoft

077 Earthquake rate changes and interevent distance distributions in the Brawley Seismic Zone, Andrea L. Llenos and Andrew J. Michael

078 Anelastic Attenuation and Elastic Scattering of Seismic Waves in the Los Angeles Region, Xin Song and Thomas H. Jordan

079 Is There a Stress Threshold Required to Trigger Remote Aftershocks (Distances >10 Mainshock Fault Lengths)? Debi Kilb, Lisa Linville, Kristine Parknow, Aaron Velasco, and Chris Hayward

080 Quantifying the Seismic Hazard From Natural and Induced Earthquakes, Justin L. Rubinstein, Andrea Llenos, William L. Ellsworth, Arthur McGarr, Andrew Michael, Charles Mueller, and Mark Petersen

081 An Empirical Subspace Detection Method for Earthquakes, Sarah A. Barrett and Gregory C. Beroza

082 Characterizing Soil-Foundation-Structure Interaction Using Experimental Data and FEM Modeling, Sandra H. Seale, Emily Stinson, Jamison H. Steidl, and Paul Hegarty

083 Mainskock Static Stress Changes and Background Stress Jointly Influence the Distribution of Aftershock Focal Mechanisms, Jeanne L. Hardebeck and P. Martin Mai

084 Compound Earthquake Identification Technique, Yonglei Wang, Shiyong Nie, and Sidaog Nij

085 Deterministic high-frequency ground motion using dynamic rupture along rough faults, small-scale media heterogeneities, and frequency-dependent attenuation, Kyle B. Withers, Kim B. Olsen, and Steven M. Day

086 Afterslip and Aftershocks Triggered by Moderate Events on the San-Jacinto Fault, Asaf Inbal, Jean-Paul Ampuero, and Jean-Philippe Avouac

087 Comparison of SMax orientations from stress inversions of focal mechanisms with 17 different strain models determined from GPS data in southern California: Contribution to the SCEC stress model, Egill Hauksson and David Sandwell

088 The 2013 Mw6.6 Cook Strait earthquake, New Zealand: preliminary geophysical observations and source model, Caroline Holden, Ian Hamling, Bill Fry, Anna Kaiser, Stephen Bannister, Ken Gledhill, Matt Gerstenberger, David Harte, David Rhodes, Martin Reyners, Yoshi Kaneko, John Ristau, and Rafael Benites

089 PageRank for Low Frequency Earthquake Detection, Ana C. Aguilar and Gregory Beroza

090 Seismicity and Tectonics of the Lake Tahoe Basin through the Truckee, California Region, Tyler C. Seaman, Christine J. Ruhl, Gretchen C. Schmauder, and Ken D. Smith

091 Rupture Complexity of the Mw 8.3 Sea of Okhotsk Earthquake, Shengxi Wei, Don Helmerbergh, Zhongwen Zhan, and Robert Graves

092 Variability of Fault Slip Behaviors along the San Jacinto Fault, Inferred from Characteristically Repeating Earthquake Activity, Taka’aki Taira

093 Simulating Large-Scale Earthquake Dynamic Rupture Scenarios Using the ADER-DG Method, Alice-Agnes Gabriel, Christian Pelties, and P. Martin Mai

094 Seismic velocity structure in the Hemet-Upland stepover and Trifurcation Areas of the San Jacinto Fault Zone from double-difference earthquake tomography, Amir A. Alham, Yehuda Ben-Zion, Frank L. Vernon, and Ittai Kurzon

095 Using phase coherence to search for and examine foreshock activity, Jessica C. Hawthorne and Jean-Paul Ampuero
POSTER PRESENTATIONS

106 Lack of Additional Triggered Tectonic Tremor around the Simi Valley and the San Gabriel Mountain in Southern California, Hongfeng Yang and Zhigang Peng

107 Analysis of Dynamic Earthquake Triggering On the West Coast of the United States For the El Major-Cucapah and Haida Gwaii Earthquakes, Rachel L. Hatch, Adam Arce, and Erik Gutierrez

108 Investigating faults using seismic interferometry, Eric Matzel

109 SKS Splitting Measurements From ALBACORE off the coast of Southern California, Joseph Ramsey, Paul Davis, and Monica Kohler

110 Unified theory of microseisms and hum, Peter Gerstoft and James Traer

111 Patterns of Seismic and Aseismic Slip on Heterogeneous Faults, Yingdi Luo and Jean-Paul Ampuero

112 Characterizing Train Noise in Southern California: Implications for Automated Tremor Detection, Tudor Cristea-Platon, Justin R. Brown, and Jean-Paul Ampuero

113 Earthquake source tensor inversion with the gCAP method and 3D Green’s functions, Jianchang Zheng, Yehuda Ben-Zion, Lupei Zhu, and Zachary Ross

114 Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN), Ellen Yu, Prabha Acharya, Apanna Bhaskaran, Shang-Lin Chen, Faria Chowdhury, and Kate Hutton

115 Rupture process of the 29 May, 2013 Mw 4.8 Isla Vista, California earthquake and its tectonic implication, Xiangyu Li and Chen Ji

116 Geothermal Pumping and Induced Seismicity in Southern California Geothermal Fields, Deborah A. Weiser and Lucile M. Jones

117 Using the Cloud Environment for Seismic Networks, Robert W. Clayton, Michael Olson, Mani Chandy, Julian Bunn, Richard Guy, and Ellen Yu

118 Lack of dynamic triggering of repeating earthquakes near Parkfield, CA, Chunquan Wu, Joan Gombert, Eli Ben-Naim, and Paul Johnson

119 Extending Seismic Tomography along the San Andreas Fault to the Lower Crust with Low Frequency Earthquakes, Clifford Thurber, KaraMcClement, David Shelly, Danielle Sumy, Nina Bennington, Dana Peterson, Elizabeth Cochran and Rebecca Harrington

120 Enhanced remote earthquake triggering at fluid injection sites in the Midwestern U.S., Nicholas J. van der Elst, Heather M. Savage, Katje M. Keranen, and Geoffrey A. Abers

121 Deep long-period earthquakes west of the volcanic arc in Oregon: Direct evidence of fluid migration through the forearc mantle wedge, John E. Vidale, Stephen D. Malone, Alicia J. Hotovec-Ellis, Seth C. Moran, K.C. Creager, Heidi Houston, and David A. Schmidt

122 Supersharp Rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) Earthquake, Han Yue, Thorne Lay, Jeffrey Freymueller, Kailua Ding, Luis Rivera, Natalia Ruppert, and Keith Koper

Unified Structural Representation (USR)

123 Updating the 3D fault set for the SCEC Community Fault Model (CFM-v4) and revising its associated fault database, Craig Nicholson, Andreas Plesch, Christopher Sorlien, John Shaw, and Egill Hauksson

124 Stochastic Descriptions of Basin Velocity Structure from Analyses of Sonic Logs and the SCEC Community Velocity Model (CVM-H), John H. Shaw, Andreas Plesch, and Thomas H. Jordan

125 Comparison of potential-field and seismic-velocity structure along the Salton Sea Seismic Imaging Project transects, northern Salton Trough, southern California, Victoria E. Langenheim, Daniel S. Scheier, Gary Fuis, Mark Goldman, Rufus Catchings, Trond Ryberg, and Michael J. Rymer

126 How much can off-fault deformation contribute to the slip rate discrepancy within the Eastern California Shear Zone? Justin W. Herbert, Michele L. Cooke, Michael Oskin, Ohilda Difo, and Karl Grette

127 Effect of thrust faults on deformation within the Eastern California Shear Zone, Karl O. Grette, Justin W. Herbert, Michele L. Cooke, Jacob A. Selander, and Michael E. Oskin

Fault Rupture and Mechanics (FARM)

128 Depth extent of large earthquakes and patterns of microseismicity: implications from rate-and-state fault models with enhanced coseismic weakening, Junle Jiang and Nadia Lapusta

129 A Note on the Relation Between Fault Roughness and Off-Fault Seismicity, Charles G. Sammis and Stewart W. Smith

130 Fault Damage Zones of the M7.1 Darfield and M6.3 Christchurch Earthquakes Characterized by Fault-Zone Trapped

131 Waves, Yong-Gang Li, Gregory De Pascale, Mark Quigley, and Darren Gravely

132 Distribution of deformation in a dextral fault-tip damage zone revealed from neotectonic mapping and high-resolution ALSM topography, Jacob A. Selander and Michael E. Oskin
POSTER PRESENTATIONS

132 Effect of postseismic creep on earthquake triggering, Ka Yan Semechah Lui and Nadia Lapusta

133 The November 2011 M5.7 Oklahoma Earthquake: Induced or Triggered? Danielle F. Sumy, Elizabeth S. Cochran, and Fred Aminzadeh

134 Earthquake Clustering and Triggering of Large Events in Simulated Catalogs, Jaccuelyn J. Gilchrist, James H. Dieterich, and Keith Richards-Dinger

135 Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization, Charles K. Lieou, Ahmed E. Elbanna, James S. Langer, and Jean M. Carlson

137 Variable low-velocity rate-weakening at the base of the seismogenic zone and within isolated rate-weakening patches and its influence on slip instability development and earthquake nucleation, Robert C. Viesca

138 Migration of the deforming zone during seismic shear and implications for field observations, dynamic weakening, and the onset of metaling, John D. Platt and James P. Rice

139 The role of Coulomb stress changes in allowing rupture of frictionally strong, orthogonally oriented faults, William D. Barnhart

140 Modeling the Effect of Strain Localization and Temperature on Frictional Response of Fault Gouges, Rui Li and Ahmed Ettaf Elbanna

141 Laboratory and numerical investigations of frictional properties of gabbro at low normal stress and elevated temperatures, Erica K. Mitchell, Kevin M. Brown, and Yuri Fialko

142 Detecting the frictional temperature rise during the 2011 Tohoku Earthquake using the thermal maturity of biomarkers, Hannah S. Rabinowitz, Heather M. Savage, Pratigya J. Polisar, Terry A. Plank, Christie D. Rowe, and James D. Kirkpatrick

143 Low Coseismic Friction on the Tohoku Fault Determined from Subsurface Temperature Measurements, Patrick M. Fulton, Emily E. Brodsy, Yasuyuki Kano, James Mori, Frederick Chester, Tsuyoshi Ishikawa, Robert N. Ham, Weirin Lin, Nobu Eguchi, and Sean Toczko

144 Experimental investigation of high-speed frictional properties of thick, water saturated gouge layers: What role for aquathermal pressurization? Kevin M. Brown and Yuri Fialko

145 Earthquake Nucleation and Propagation on Rate and State Faults: Single vs Two State Variables Formulation and Evolution by Kato-Tullis law, Xiao Ma and Ahmed E. Elbanna

146 Dynamics of anti-plane shear ruptures with off-fault plasticity, Ahmed E. Elbanna and Ralph Archuleta

147 Can supershear earthquakes occur under low overall levels of shear prestress? Vito Rubino, Nadia Lapusta, and Ares J. Rosakis

148 The SCEC-USGS Dynamic Earthquake Rupture Code Verification Exercise – Recent Progress, Ruth A. Harris

149 Rupture and Ground Motion Models on the Claremont-Casa Loma Stepover of the San Jacinto Fault, Incorporating Complex Fault Geometry, Stresses, and Velocity Structure, Julian C. Lozoz, Kim B. Olsen, David D. Oglesby, and James N. Brune

150 Dynamic rupture and ground motion simulations with slip reactivation of the 2011 Mw 9.0 Tohoku earthquake, Luis A. Dalguer and Percy Galvez

151 Towards an Adaptive and High-Order Accurate Numerical Method for Earthquake Rupture Dynamics in Complex Geometries, Jeremy E. Kozdon and Lucas C. Wilcox

152 Linking initial stress states of dynamic rupture models of large earthquakes to the tectonics of source regions, Benchun Duan

153 A 2D Pseudo-Dynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults, Daniel T. Trugman and Eric M. Dunham

154 Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media, Samuel A. Bydlon, Jeremy E. Kozdon, and Eric M. Dunham

155 Large-Scale Earthquake Rupture Simulations Using a Hybrid Method, Heming Xu, Yifeng Cui, Dong Ju Choi, Efecn Poyraz, Keith Richards-Dinger, and James H. Dieterich

156 Earthquake ruptures modulated by fault-zone waves, Yihe Huang, Jean-Paul Ampuero, and Don Helmberger

157 Properties of pulse-like ruptures induced by slip-proportional backstress controlled by fault roughness, Franklin Koch and Jean-Paul Ampuero

158 Earthquakes that Violate Self-Similarity Scaling Laws: Possible Explanations from Kinematic and Quasi-dynamic Simulations, Bryan Riel and Jean-Paul Ampuero

159 Imaging moderate earthquake ruptures with back-projection of seismic arrays data, Xin Liu and Yehuda Ben-Zion
dc3dm: Software to efficiently form and apply a 3D DDM operator for a nonuniformly discretized rectangular planar fault, Andrew M. Bradley

160 Exploring Breakdown Energy in Simulations of Earthquake Sequences, Stephen M. Perry and Nadia Lapusta

161 Biases in the Coseismic Slip Models of Shallow Subduction Earthquakes Induced by Using Elastic Green’s Functions, Qian Yao and Shuo Ma

162 Internal structure of the shallow Japan Trench décollement: insights into the long-term evolution of the margin and coseismic slip processes, Jamie Kirkpatrick, Kohtaro Ujiie, Toshiaki Mishima, Fred Chester, Christie Rowe, Christine Regalla, Francesca Remitti, Casey Moore, Virginia Toy, Jun Kameda, Santaru Bose, and Monica Wolfson-Schwehr

163 The November 2011 M5.7 Oklahoma Earthquake: Induced or Triggered? Danielle F. Sumy, Elizabeth S. Cochran, and Fred Aminzadeh

164 Deterministic Models of Aftershocks, Bruce E. Shaw, Keith B. Richards-Dinger, James H. Dieterich, and Heming Xu

165 Analysis of period-dependent source process of the 2011 Tohoku earthquake using telesesmic body-wave data, Hisahiko Kubo, Tomotaka Iwata, and Kimiyuki Asano

166 M -6 laboratory earthquakes driven by asessimic slip, Gregory C. McLaskey, Brian D. Kilgore, Nicholas M. Beeler, and David A. Lockner

167 Spatio-temporal evolution of the March 11 2013 Mw4.7 earthquake sequence in the Anza section of the San Jacinto fault, Gavin M. Rinaldo, Xiaofeng Meng, and Zhigang Peng

168 Low Velocity Zones along the San Jacinto Fault in Southern California Inferred From High-Frequency Body Waves of Local Earthquakes, Zefeng Li, Hongfeng Yang, Zhigang Peng, Yehuda Ben-Zion, and Frank Vernon

169 Non-central principal component analysis of geochemical data and clay mineralogy from the San Jacinto fault in southern California: a new method to assess alteration intensity in fault zones, Brian G. Rockwell, Gary H. Girty, and Thomas K. Rockwell

170 Suppression of strike-slip fault systems by crustal heterogeneities, Ivy S. Curren and Peter Bird

171 Segmentation and step-overs along strike slip fault systems in the inner California borderlands: Implications for fault architecture and basin formation, Jillian M. Maloney, Neal W. Driscoll, Graham M. Kent, and Daniel S. Brothers

172 Strain Localization in the Coulomb Wedge and the Stabilizing Role of Fluids: A New Splay Faulting Model in the Shallow Subduction Zone, Evan T. Hirakawa and Shuo Ma
POSTER PRESENTATIONS

173 The transition from brittle faulting to thermally-activated cataclastic flow in sandstone as a function of pore fluid pressure: Laboratory constraints on the effective pressure law at the seismogenic depths, Taka Kanaya and Greg Hirth

174 An invasion percolation model for earthquakes with applications to fracturing, J. Quinn Norris, Don Turcotte, and John Rundle

175 Slow stick-slip of serpentinite as a possible mechanism of slow earthquakes, Keishi Okazaki, Ikuo Katayama, and Miki Takahashi

176 Seismic off-fault activity, fault roughness and evolution during laboratory stick-slip experiments, Thomas H. Goebel, Thorsten W. Becker, Thibault Candela, Georg Dresen, Charles G. Sammis, and Daniel Schorlemmer

177 Snap, crackle, pop: dilatational fault breccias record seismic slip below the brittle-plastic transition, Ben L. Melosh, Christie D. Rowe, Conrad Groenewald, Louis Smit, and Christopher W. Lambert

178 Factors controlling shallow co-seismic deformation: Quantifying distributed co-seismic deformation of the 1992 Landers earthquake, Chris W. Milliner, James Hollingsworth, James Dolan, Sebastien Leprince, and Francois Ayoub

What can small earthquakes tell us about fault slip? Is less more? Justin R. Brown

The energy budget of a fault, Elizabeth H. Madden, Michele L. Cooke, and Jessica McBeck

Stress and Deformation Over Time (SDOT)

181 End-User Application for Generating Stochastic Stress, with Applications to the Community Stress Model, Special Fault Study Areas, and Dynamic Rupture Modeling, Deborah E. Smith and Steven Golden

182 The SCEC Community Stress Model web site – v.0.1, John Yu, Thorsten W. Becker, Jeanne Hardebeck, and SCEC CSM Working Group

183 Topographic stress fields and their influence on faulting, Richard H. Styron and Eric A. Hetland

184 Toward constraining absolute stress in southern California, Karen M. Luttrell, Bridget R. Smith-Konter, and David T. Sandwell

185 Analog Modeling of Restraining Bends: A Study of Strike-Slip Fault Evolution, Alex E. Hatem, Elizabeth H. Madden, and Michele L. Cooke

186 Tectonic Evolution of Transpressional Fault Systems, Mark R. Legg

187 Toward More Accurate Benchmarks and Fault Slip Inversions: Issues Encountered When Comparing Analytical Solutions With FEM Results, Charles A. Williams and Susan Ellis

188 Reconciling geological and geodetic models of interseismic deformation in Southern California, Simon D. Daout, Sylvain Barbot, Yuri Fialko, Zhen Liu, and Paul Tapponnier

189 Geodetic estimates of shortening rates and vertical motion in the Western Transverse Ranges, Kaj M. Johnson, W.C. Hammond, R.J. Weldon, G. Blewitt, and R. Burgette

190 Sixty years of viscoelastic stress transfer across the North Anatolian fault, Phoebe Robinson DeVries and Brendan J. Meade

Community Modeling Environment (CME)

195 Running CyberShake Seismic Hazard Workflows on Distributed HPC Resources, Scott Callaghan, Philip Maechling, Gideon Juve, Karen Vahi, Robert W. Graves, Kim B. Olsen, David Gill, Kevin Milner, John Yu and Thomas H. Jordan

196 Accelerating CyberShake Calculations on Petascale Heterogeneous Supercomputers, Yifeng Cui, Efecan Poyraz, Jun Zhou, Scott Callaghan, Philip Maechling, Thomas Jordan, Liwen Shih and Po Chen

197 UCVM: An Open Source Framework for 3D Velocity Model Research, David Gill, Phil Maechling, Thomas Jordan, Andreas Plesch, Ricardo Taborda, Scott Callaghan, Patrick Small

198 Full-3D waveform tomography of Southern California crustal structure by using earthquake recordings and ambient noise Green’s functions based on adjoint and scattering-integral methods, En-Jui Lee, Po Chen, Thomas H. Jordan, Philip J. Maechling, Marine Denolle, and Gregory C. Beroza

199 An optimized parallel LSQR algorithm for large-scale full-wave tomography based on the scattering-integral method, Po Chen, En-Jui Lee, He Huang, John Dennis, and Wang Liqiang

200 3D Rceiver Green’s Tensors and Green Function Database Construction Using the Octree-based Hercules Tool-chain, Leonardo Ramirez-Guzman

201 Tracing the Monterey Micro Plate towards the Isabella Anomaly using Receiver Functions and Tomography, Paul Cox and Paul Davis

202 Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results, Kayla A. Kroll, Keith B. Richards-Dinger, and James H. Dieterich
<table>
<thead>
<tr>
<th>Posters 203-236</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Motion Prediction (GMP)</td>
</tr>
<tr>
<td>204</td>
</tr>
<tr>
<td>205</td>
</tr>
<tr>
<td>206</td>
</tr>
<tr>
<td>207</td>
</tr>
<tr>
<td>208</td>
</tr>
<tr>
<td>209</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>211</td>
</tr>
<tr>
<td>212</td>
</tr>
<tr>
<td>213</td>
</tr>
<tr>
<td>214</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>216</td>
</tr>
<tr>
<td>217</td>
</tr>
<tr>
<td>218</td>
</tr>
<tr>
<td>219</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>221</td>
</tr>
<tr>
<td>222</td>
</tr>
<tr>
<td>223</td>
</tr>
<tr>
<td>224</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>226</td>
</tr>
<tr>
<td>227</td>
</tr>
<tr>
<td>228</td>
</tr>
<tr>
<td>229</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>231</td>
</tr>
<tr>
<td>232</td>
</tr>
<tr>
<td>233</td>
</tr>
<tr>
<td>234</td>
</tr>
<tr>
<td>235</td>
</tr>
<tr>
<td>236</td>
</tr>
</tbody>
</table>
Earthquake Engineering Implementation Interface (EEII) Posters 237-240

237 The Community Seismic Network and Quake-Catcher Network: Monitoring building response to earthquakes through community instrumentation, Monica D. Kohler, Ming Hei Cheng, Thomas Heaton, Robert Clayton, Mari Chandy, Elizabeth Cochran, and Jesse Lawrence

238 Fully Coupled Models of (Idealized) Buildings and Seismic Waves from Earthquakes, Alex Kinsella and Eric M. Dunham

239 Tall building response to simulated pulse-like ground motions, Ting Lin, Nenad Bijelic, and Gregory Deierlein

240 Proposed parameters for the engineering validation of ground motion simulations, Lynne S. Burks and Jack W. Baker

Summer Undergraduate Research Experience (SURE) Posters 241-246

241 A Virtual Field Excursion to Pallett Creek - A New Educational Product of the San Bernardino County Museum's Hall of Geological Wonders Discover Your Backyard Field Guide Series, Michelle J. Vanegas, Kathleen Springer, Robert M. de Groot, and Eric Scott

242 A Testbed for Modernizing Active Earth Monitor by Replacing Flash with HTML5 and Development of the San Andreas Fault Content set for Public Displays, Edgar Chu, Russ Welti, Grace Hwang, Derek Hoang, Kevin Chan, Patrick McQuillan, Robert de Groot, Kathleen Springer and Bob Lillie

243 New Trenching Extends Previous Record of Paleoseismic Events on the Claremont Fault at Mystic Lake, San Jacinto Fault Zone, California, Sally F. McGill, Matthew J. Warbritton, Nathan W. Onderdonk, and Thomas K. Rockwell

244 Preliminary Report on Paleoseismic Investigation of Offset Channel Sieh31 in the Carrizo Plain, California, Daniel Halford, Sinan Akciz, Lisa Grant Ludwig, Gayatri I. Marliyani, James B. Salisbury, Emily J. Kleber, and Ramon Arrowsmith

245 Mendenhall Glacier (Juneau, Alaska) icequake seismicity and its relationship to the 2012 outburst flood and other environmental forcing, Paul M. Morgan, Jacob I. Walter, Zhigang Peng, Jason Amundson, and Xiaofeng Meng

246 Tectonic tremor and brittle seismic events triggered along the Eastern Denali Fault in northwest Canada, Jessica P. Zimmerman, Chastity Aiken, and Zhigang Peng

Communication, Education, & Outreach (CEO) Posters 247-250

247 Northridge: 20 years later - a educational web portal created for the 20th anniversary of the Northridge earthquake and beyond, Kathleen Springer, Erin Burkett, Robert W. Graves, Kenneth Hudnut, Lucile Jones, SCEC UseIT Interns 2013, Robert de Groot, Mark Benthien, Mark Romano and Eric Scott

248 Data and Feature Enhancements to the NEES@UCSB Data Portal, Matthew Cook, Jamison Steidl, Paul Hegarty, Zack Babtkis, Andrew Lo, and Francesco Civillini

249 Vital Signs of the Planet: A Professional Development Program for High School and Middle School Science Teachers Provides Teachers with Authentic Experiences in Scientific Inquiry and Encourages Instructional Improvement in Schools Through Lesson Study, Bernadette E. Vargas, Helen Corral-Bonner, Alfonso Barrientos, Sandy Calonge, Elizabeth Cochran, Naging Cox, Robert M. de Groot, Rhonda Fuller, Adrian Gamez, Matthew Golombek, Paul Gonzales, Kristin Holland, Kevin Hussey, Jane Houston Jones, Daniel Keck, Mark Kline, Sally McGill, Paula Partita, Guadalupe Rowley, Kathleen Springer, Joann Stock, Danielle Sumy, Mark Swift, Margaret Vinci, Alice Wessen, Jerry Young and Rachel Zimmerman-Brachman

Earthquake Forecasting & Predictability (EFP) Posters 251-262

251 Forecasting California Earthquakes Using Historical Patterns of Events and Virtual California Simulations, Michael K. Sachs, John B. Rundle, Eric Heien, Donald Turcotte, Burak Yikilmaz, and Louise Kellogg

252 1/f and the Earthquake Problem: Scaling constraints to facilitate earthquake forecasting, Mark R. Yoder, John B. Rundle, and Margaret T. Glasscoe

253 The Effects of Static Coulomb Stress Change on Southern California Earthquake Forecasting, Anne E. Strader and David D. Jackson

254 Time-independent earthquake rates for the western US, excluding California, Morgan P. Moschetti

255 Extracting large earthquake probabilities from small-quake tidal-correlations, Karin A. Dahmen, Braden A.W. Blinkman, Michael LeBlanc, Yehuda Ben-Zion, and Jonathan Uhl

256 Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map, Peter Bird, Cornelis W. Kreemer, Yan Y. Kagan, and David D. Jackson

257 Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults, Karen R. Felzer

258 Anthropogenic Seismicity Rates and Operational Parameters at the Salton Sea Geothermal Field, Emily E. Brodsky and Lia Lajoie

259 Revisiting the Historical Earthquake Catalog in Northern California, Susan E. Hough and Stacey Martin

260 Signatures of Delayed Dynamic Triggering, Andrew A. Delorey, Paul A. Johnson, Kevin Chao, and Kazushige Obara

261 A New Methodology for Dynamic Network Identification in Seismicity, João Felipe S. Melo and Ahmed Elbanna

262 Rupture Synchronicity in Complex Fault Systems, Kevin R. Milner and Thomas H. Jordan
<table>
<thead>
<tr>
<th>Posters 263-267</th>
<th>Collaboratory for the Study of Earthquake Predictability (CSEP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>An Update on the Collaboratory for the Study of Earthquake Predictability Activities, Maria Liukis, Danijel Schorlemmer, John Yu, Philip Maechling, Jeremy Zechar, Maximilian Werner, Thomas H. Jordan and the CSEP Working Group</td>
</tr>
<tr>
<td>265</td>
<td>Canterbury, New Zealand, Matthew C. Gerstenberger, David Rhoades, Masha Liukis, and Annemarie Christophersen</td>
</tr>
<tr>
<td>266</td>
<td>Short-Term Earthquake Predictability in California, Maximilian J. Werner, Agnes Helmstetter, David D. Jackson, and Yan Y. Kagan</td>
</tr>
<tr>
<td>267</td>
<td>Analyzing the evolution of total and anomalous strain in Southern California following the 2010 El Mayor-Cucapah Earthquake, Gina Scherbenko and William Holt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Posters 268-270</th>
<th>Working Group on California Earthquake Probabilities (WGCEP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>268</td>
<td>Investigation Of Fault-To-Fault Predictions And Results From UCERF3, Glenn P. Biasi</td>
</tr>
<tr>
<td>269</td>
<td>Fault System Connectivity and the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), Morgan T. Page, Edward H. Field, and Kevin R. Milner</td>
</tr>
<tr>
<td>270</td>
<td>The UCERF3 logic tree: Exploring computations and correlations using PSHA, Peter M. Powers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Posters 271-276</th>
<th>Earthquake Early Warning (EEW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>Real-time inversion for finite fault slip models and rupture geometry based on high-rate GPS data, Sarah E. Minson, Jessica R. Murray, John O. Langbein, and Joan S. Gomberg</td>
</tr>
<tr>
<td>272</td>
<td>Transient gravity changes induced by earthquake rupture and implications for early warning, Jean-Paul Ampuero, Jan Harms, and Surendra Nadh Somala</td>
</tr>
<tr>
<td>273</td>
<td>From Scaling Relationships to Near-Source Tsunami Models: Complete Characterization of Ground Motion and Earthquake Hazards with Seismogeodesy, Diego Melgar, Brendan W. Crowell, Jianghui Geng, Yehuda Bock, and Jennifer S. Haase</td>
</tr>
<tr>
<td>274</td>
<td>Testing the Rapid Detection Capabilities of the Quake-Catcher Network, Angela I. Chung, Elizabeth S. Cochran, Battalgazi Yildirim, Carl Christensen, Anna E. Kaiser, and Jesse F. Lawrence</td>
</tr>
<tr>
<td>275</td>
<td>Estimating Seismic Intensity for Mid- to High-rise Buildings in Earthquake Early Warning Systems, Ming Hei Cheng, Thomas H. Heaton, and Robert W. Graves</td>
</tr>
<tr>
<td>276</td>
<td>CISN Testing Center ShakeAlert Performance Summaries, Philip J. Maechling, Maria Liukis, Thomas H. Jordan, and CISN ShakeAlert Working Group</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Posters 277-280</th>
<th>Undergraduate Studies in Earthquake Information Technology (UseIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>SCEC UseIT Program: Documenting the 2013 Grand Challenge and Intern Experience, Sarah Vargas, Benjamin Anderson, David Bolen, Jonathan Ho, Nick Rousseau, Mark Romano, Dave Smith, Tom Jordan, John Yu and Robert de Groot</td>
</tr>
<tr>
<td>278</td>
<td>SCEC UseIT Program: Visualizing Basin Depths, Site Effects from VS30 and HAZUS Events while improving usability and optimizing SCEC-VDO, Taylor Hellam, Anta Imata Safo, Diego Furtado, Jeremy Chen, May L. Forssen, Miguel Villasana, Dave Smith, Kevin Milner, Scott Callaghan, Nick Rousseau, Thomas Jordan, and Robert de Groot</td>
</tr>
<tr>
<td>279</td>
<td>SCEC-VDO, GIS, and OpenSHA Implementation for the UseIT 2013 Grand Challenge, Kimberly A. Gloersen, Miguel Frias-Rodriguez, Ngoc Kiem, Ryan Meier, Matthew Rieman, Kelvin Vasquez, Yao-Yi Chiang, Nick Rousseau, Robert de Groot, and Thomas Jordan</td>
</tr>
<tr>
<td>280</td>
<td>SCEC USEIT Program: Implementing GIS, UCERF3, and OpenSHA data in SCEC-VDO, Hannah Shamloo, Lindsay Arvin, Karina Novoa, Dan Philo, Ani Pytlowski, Jing Yuan, Kevin Milner, Scott Callaghan, Dave Smith, Nick Rousseau, Yao Yi Chiang, Thomas Jordan and Robert de Groot</td>
</tr>
</tbody>
</table>
Meeting Participants

AAGAARD Brad, USGS 073
ABERS Geoffrey, LDEO 120, Mon1515
ABRAHAMSON Norman, PG&E 203, 211, 212
ABUEG Nicole, UVI 025
ACHARYA Prabha, Caltech 114
AFSHARI Kloumars, UCLA
AGNEW Duncan, IGP/SIO/UCSD 053, 054
AGUIAR Ana, Stanford 089
AHDI Sean, UCLA
AIKEN Chastity, Georgia Tech 246
AKCIZ Sinan, UCLA 010, 026, 027, 244
ALLAM Amir, USC 094
ALLEN Richard, UC Berkeley Wed0800
ALVAREZ Melva, PCC
AMINZADEF Fred, USC 133
AMPUERO Jean-Paul, Caltech 086, 095, 111, 112, 156, 157, 158, 272
AMUNDSON Jason, UAS 245
ANDERSON R. Scott, Northern Arizona U 005
ANDERSON greg, NSF
ANDERSON Jon, UNR 203, 208
ANDERSON Benjamin, USC 277
ANDERSON James, UVU 025
AOI Shin, NIED 236
ARCE Adam, UCSB 106
ARCHULETA Ralph, UCSC 102, 146, 203, 207, 220
ARGUS Donald, NASA JPL 044, 066
ARREGUI OJEDA Sergio, CICESE 061
ARROWSMITH J Ramon, ASU 015, 016, 025, 026, 060, 061, 244
ARVIN Lindsay, USC 280
ASANO Kiimiyuki, DPRI Kyoto 165, 236
ASPIOTES Aris, USGS 041
ASSATOURIANS Karen, Western U 203, 206
ASSIMAKI Dominic, Georgia Tech 221
ATANASOV Atanas, Harvard 070
ATKINSON Gail, Western U 203, 206, 215
AVOUAC Jean-Philippe, Caltech 086
AYOUB Francois, Caltech 178
BABTKIS Zack, NEES@UCSB 248
BACA Austin, Cal Poly Pomona
BAKER Jack, Stanford 240
BAKER Scott, UNAVCO 049
BAI LAMMIN, USC 114, SSEC/USC
BALTAY Annemarie, USGS 213
BANESHI Diya, UC Davis 018, 061
BANGS Nathan, UTIG 071
BANNISTER Stephen, GNS Science 065, 088
BARALL Michael, Invisible Software
BARBA Magali, Cal Poly Pomona 050
BARBOT Sylvain, Caltech 052, 188
BARBOUR Andrew, UCSD 054
BARKLAGE Mitchell, NodalSeismic
BARNHART William, USGS 139
BARR Mary, UC Davis 028
BARRERA Wendy, UCLA 020
BARRETT Sarah, Stanford 081
BARRIENTOS Alfonso, Rubidoux HS 037, 249
BARTLOW Noel, Stanford 065
BARU Chaitanya, SDSU 049
BASLER-Reeder Kyle, UNR
BAUER Klaus, GFZ Potsdam 073
BAYLESS Jeff, URS 203, 210
BEAUDDOIN Bruce, IRIS
BEAVAN R. John, GNS Science 065
BECKER Thorsten, USC 176, 182, 193
BEELER Nicholas, USGS 166
BEHR Whitney, UT Austin
BEMIS Sean, U Kentucky 028
BEN-NAIM Eli, Los Alamos Natl Lab 118
BEN-ZION Yehuda, USC 075, 094, 099, 100, 104, 113, 159, 168, 255
BENITES Rafael, GNS Science 088
BENITZ Isabella, CSUSB 038
BENNETT Richard, Arizona 037, 038, 039, 040
BENNETT Scott, USGS
BENNINGTON Nina, U Wisconsin 119
BENTHIN Mark, SCEC/USC 247
BERELSON William, USC
BERGEN Kristian, Harvard 013
BEROZA Gregory, Stanford 081, 089, 107, 197, 209, 223
BHASKARAN Apama, Caltech 114
BIASI Glenn, UNR 268
BIELAK Jacobo, CMU
BIJEILIC Nenad, Stanford 239
BILHAM Roger, U Colorado
BIRD Peter, UCLA 170, 256
BLANPIED Michael, USGS
BLEWITT Geoffrey, UNR 189
BLISNIUK Kimberly, UC Berkeley 032
BLOOMFIELD Hannah, U Reading 048
BOCK Yehuda, UCSD 052, 273
BOESE Maren, Caltech
BOHON Wendy, ASU
BOLEN David, USGS 277
BONUSO Nicole, CSUF 002
BOOKER Cecilia, US Navy
BORJANNAY Jayne, UNR 096
BORSA Adrian, SIO/UCSD 060, 061
BOSE Santanu, Calcutta 162
BOSS Stephanie, USC
BOSTON Ann, U Washington Wed0845
BOWDEN Daniel, Caltech Tue1515
BOWMAN David, CSUF
BRADLEY Andrew, Stanford 160
BRADLEY Brendon, U Canterbury 225, 226
BREUER Alex, TU Mu¨nchen 070
BRINKMAN Braden, UIUC 255
BROCHER Thomas, USGS
BRODSKY Emily, UCSC 143, 248, Tue1015
BROOKS Benjamin, USGS 027
BROTHERS Daniel, UCSD 066, 171
BROWN Justin, Caltech/USGS 112, 119
BROWN Nathan, UCLA 020
BROWN Kevin, UCSD 141, 144
BRUHAT Lucile, Stanford
BRUNE Richard, UC Irvine
BRUNE James, UNR 149
BRYSON Gwen, ASF 049
BUCEHLER Brian, U Alaska 049
BUNN Julian, Caltech 117
BURGETTE R., U Oregon 189
BÜRGMANN Roland, UC Berkeley 032, 097
BURKETT Corey, U Kentucky 028
BURKETT Erin, USGS 036, 247
BURKS Lynne, Stanford 240
BUTCHER Amber, USC
BYDLOK Samuel, Stanford 154
BYKOVTSVEV Alexander, Reg Acad of Nat Sci 231
CABDA Ana, CWU
CALLAGHAN Scott, SCEC/USC 195, 196, 197, 214, 278, 280
CALONGNE Sandy, Heritage Int School 037, 249
CAMPBELL Kenneth, EQECA
CAMPILLO Michel, U Joseph Fourier 104
CANDELA Thibault, Penn State 176
CAPALDI Tomas, UCLA 020
CARDONA Jose, CSUN 031
CARLSON Jean, UCSB 135
CARLSON Joseph, UVI 025
CASTRO Raúl, CICESE 103
CATCHINGS Rufus, USGS 073, 125
CELEBI Mehmet, USGS
CHAN Kevin, USC 242
CHANDY Kaniathantha, Caltech 117, 237
CHANTRAPORNLETR Kevin, Cal Poly Pomona
CHAO Kevin, Georgia Tech 260
CHEHAL Simarjit, CSUN
CHEN Shang-Lin, Caltech 114
CHEN Tao, China EQ Admin 250
CHEN Po, U Wyoming 196, 198, 199
CHEN Jeremy, USC 278
CHENG Ming Hei, Caltech 237, 275
CHESTER Fred, Texas A&M 145, 162, Tue000
CHESTER Judith, Texas A&M
CHEW Barry, CSUSB 040
CHIANG Yao-Yi, USC 279, 280
CHIOU Ray, NAVFAC ESC
CHOI Dong Ju, SDSC 155
CHOWDHURY Faris, Caltech 114
CHRISTENSEN Carl, Stanford 274
CHRISTOPHERSEN Annemarie, ETH Zürich 264, 265
CHU Edgar, SCEC/USC 242
CHUANG Angela, Stanford 274
CIVILINI Francesco, UCSB 248
CLAYTON Robert, Caltech 117, 237
COCHRAN Elizabeth, USGS 119, 133, 237, 249, 274
CONRAD John, UC Riverside 042
COOK K., Caltrans
COOK Matthew, UCSC 248
COOKE Michele, UMass 033, 126, 127, 180, 185
CORDOVA Jeremy, CSUF 002
CORHAN Laura, USC
CORRAL-BONNER Helen, Sherman Indian HS
COX Nagan, NASA JPL 249
COX Paul, UCLA 201
CREAGER D’Isis, CSUF 003, 004
CREAGER Kenneth, U Washington 121
CREMPENJORG, UCSB 102, 203, 207
CRISTEA-PLATON Tudor, Caltech 112
CROSBY Christopher, ASU 049
CROWELL Brendan, UCSD 273
CUI Yifeng, SDSU 155, 196
CURREN Robert, Kansas State
CURREN Ivy, UCLA 170
DAHMEN Karin, UIUC 255
DALGIER Luis, ETH Zürich 150, 227
DANIELS Jillian, UCLA 020, 232
DAOUT Simon, Earth Obs Singapore 188
DAVIS Paul, UCLA 109, 201
DAY Steven, SDSU 085, 136, 203, 209, 217, Tue1430
DE GROOT Robert, SCEC/USC 241, 242, 247, 277, 278, 279, 280
DE PASCALE Gregory, U Canterbury 130
DEIERLEIN Gregory, Stanford 239
MEETING PARTICIPANTS

TURINGAN Maria, IGPP/SIO/UCSD
TYMOFYEYeva Ekaterina, SIO/UCSD
UCARKUS Gulsen, SIO/UCSD 006, 096
UHL Jonathan, UUIC 255
UJIIE Kohtaro, U Tsukuba 162
VADMAN Michael, CSUN
VAHI Karan, ISI/USC 195
VAN DER ELST Nicholas, LDEO 120, Mon1515
VANEAGAS Michelle, CSULA 241
VARGAS Sarah, Chaffey College 277
VARGAS Bernadette, Etiwanda HS 037, 249
VASQUEZ Kelvin, ELAC 279
VEERARAGHAVAN Swetha, Caltech 229
VEGA Vanessa, CSUSB 038
VELASCO Aaron, LANL 079, 103
VERNON Frank, UCSD 094, 168
VIDALE John, U Washington 121, Wed0845
VIESCA Robert, Tufts 137
VILLANI Manuela, ARUP London 211
VILLASANA Miguel, PCC 278
VINCI Margaret, Caltech 249
VON DAESSOW Wesley, Lafayette College 050
WALD David, USGS 233
WALLACE Laura, UTIG 065
WALLING Melanie, Letts Consultants
WALLS Christian, UNAVCO
WALTER Jacob, UCSC 245
WANG Jun, Indiana 051
WANG Kang, SIO/UCSD 064
WANG Yongfei, UCSD/SDSU 084
WANG Feng, USC
WANG Fei, USGS
WANG Honglei, USGS
WANG
Feng, VPAC 203, 214
WARBRITTON Matthew, Saint Louis U 243
WARD Steven, UCSC

WARREN Jessica, Stanford 022
WATSON-LAMPREY Jennie, Watson-Lampréy
WEI Shengji, Caltech 058, 091
WEISER Deborah, UCLA 116
WELDON Ray, U Oregon 034, 189
WELDON Nicholas, 034
WELT Russ, IRIS 242
WERNER Maximilian, Princeton 263, 265, 266, Mon1430
WESNOUSKY Steven, UNR
WESSEN Alice, NASA JPL 249
WESTON Jennifer, U East Anglia 048
WHEARTY Joe, SDSU 023
WHITCOMB James, NSF
WHITTAKER Andrew, MCEER/U Buffalo
WICKER Cary, CSULB 017
WILCOX Lucas, NPS 151
WILLIAMS Charles, GNS Science 187
WILLIAMS Patrick, SDSU 015, 032
WILLIS Chris, CGS 235
WITHERS Kyle, SDSU 085
WITKOSKY Ryan, Caltech 028, 029, 030
WOLF Evan, UCLA 020
WOLFE Cecily, USGS
WOLFF Lisa, CSUN 029, 030
WOLFSON-SCHWEHR Monica, U New Hampshire 162
WONG-ORTEGA Victor Manuel, CICESE 103
WOODDELL Kathryn, PG&E 203, 212
WORDEN Charles, USGS 233
WU Chuning, LANL 118
WU Francis, USC/SUNY Binghamton
WYATT Frank, UCSD 050, 054
WYMAN Dana, Stanford
XU Xiaohua, IGPP/SIO/UCSD 059
XU Heming, SDS/UCSD 155, 164
XUE Lian, UCSC 047

YAGI Yuji, U Tsukuba
YAGODA-BIRAN Gory, UNR 074
YANG Hongfeng, Georgia Tech 105, 168
YAO Qian, UCSD/SDSU 161
YENIER Emrah, Western U Canada 215
YIKILMAZ Burak, UC Davis 251
YILDIRIM Battalgazi, Stanford 274
YODER Mark, UC Davis 252
YONG Alan, USGS 234
YOUN Claire, Stanford 107
YOU Chunhan, SDSU 049
YOUNG Jerry, Painted Hills MS 037, 249
YOUNG Karen, USC
YU Ellen, Caltech 114, 117
YU Junjie, Caltech
YU John, USC 182, 195, 263, 277
YUAN Jing, USC 280
YUE Han, UCSC 122
YULE Doug, CSUN 029, 030
YUN Sang-Ho, NASA JPL
ZALIAPIN Ilya, UNR 075
ZAREIAN Farzin, UC Irvine 228
ZECHAR Jeremy, ETH Zürich 263, 265
ZENG Yuehua, USGS
ZHAN Zhongwen, Caltech 091
ZHENG Jianchang, USC 113
ZHONG Peng, UC Irvine 228
ZHOU Jun, SDSC 196
ZHU Lupei, Saint Louis U 099, 113
ZIELKE Olaf, KAUST 016
ZIGONE Dimitri, USC 104
ZIMMERMAN Jessica, Texas A&M 246
ZIMMERMAN Mark, U Minnesota 022
ZIMMERMAN-BRACHMAN Rachel, NASA JPL 249
ZINKE Robert, USC
ZUZA Andrew, UCLA
The Southern California Earthquake Center (SCEC) is an institutionally based organization that recognizes both core institutions, which make a major, sustained commitment to SCEC objectives, and a larger number of participating institutions, which are self-nominated through the involvement of individual scientists or groups in SCEC activities and confirmed by the Board of Directors. Membership continues to evolve because SCEC is an open consortium, available to any individual or institution seeking to collaborate on earthquake science in Southern California.

Core Institutions and Representatives

<table>
<thead>
<tr>
<th>Core Institution</th>
<th>Core Institution Director</th>
<th>Participating Institution</th>
<th>Participating Institution Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>USC, Lead</td>
<td>Tom Jordan</td>
<td>USC Los Angeles</td>
<td>Peter Bird</td>
</tr>
<tr>
<td>Caltech</td>
<td>Nadia Lapusta</td>
<td>UC Riverside</td>
<td>David Oglesby</td>
</tr>
<tr>
<td>CGS</td>
<td>Chris Wills</td>
<td>UC San Diego</td>
<td>Yuri Faliko</td>
</tr>
<tr>
<td>Columbia</td>
<td>Bruce Shaw</td>
<td>UC Santa Barbara</td>
<td>Ralph Archuleta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USGS Pasadena</td>
<td>Rob Graves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harvard</td>
<td>Jim Rice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>Tom Herring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDSU</td>
<td>Steve Day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanford</td>
<td>Paul Segall</td>
</tr>
</tbody>
</table>

SCEC membership is open to participating institutions upon application. Eligible institutions may include any organization (including profit, non-profit, domestic, or foreign) involved in a Center-related research, education, or outreach activity. An invitation was sent this summer to all SCEC3 domestic participating institutions and institutions new to SCEC that were funded in 2012 to apply for participating institution status in SCEC4, as called for in the SCEC by-laws. As of August 2012, the following institutions have applied for participating institution status for SCEC4 (2012-2017).

Domestic Participating Institutions and Representatives

<table>
<thead>
<tr>
<th>Appalachian State</th>
<th>Colorado Sch. Mines</th>
<th>Smith</th>
<th>U Illinois</th>
<th>U Wisconsin Madison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Appalachian State</td>
<td>John Loveless</td>
<td>Sandia</td>
<td>Clifford Thurber</td>
</tr>
<tr>
<td></td>
<td>Scott Marshall</td>
<td>SUNY at Stony Brook</td>
<td>U Kentucky</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>William Holt</td>
<td></td>
<td>URS Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Texas A&M</td>
<td></td>
<td>Paul Somerville</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Judith Chester</td>
<td>U Massachusetts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U Alaska Fairbanks</td>
<td>U Michigan Ann Arbor</td>
<td>Susanne Janecke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carl Tape</td>
<td></td>
<td>Utah State</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UC Berkeley</td>
<td></td>
<td>Utah Valley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carl Tape</td>
<td></td>
<td>Nathan Toke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U Oregon</td>
<td></td>
<td>WHOI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UC Davis</td>
<td></td>
<td>Jeff McGuire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael Oskin</td>
<td>U New Hampshire</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UC Irvine</td>
<td></td>
<td>Margaret Boettcher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lisa Grant Ludvig</td>
<td>U Texas El Paso</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U Cincinnati</td>
<td>Bridget Smith-Koner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lewis Owen</td>
<td></td>
<td>U Texas Austin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whitney Behr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

International Participating Institutions

<table>
<thead>
<tr>
<th>International Participating Institution</th>
<th>International Participating Institution</th>
<th>International Participating Institution</th>
<th>International Participating Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academia Sinica (Taiwan)</td>
<td>ERI Tokyo (Japan)</td>
<td>Nat’l Central U (Taiwan)</td>
<td>U Western Ontario (Canada)</td>
</tr>
<tr>
<td>CICESE (Mexico)</td>
<td>ETH Zürich (Switzerland)</td>
<td>Nat’l Chung Cheng (Taiwan)</td>
<td></td>
</tr>
<tr>
<td>DPRI Kyoto (Japan)</td>
<td>IGNs (New Zealand)</td>
<td>Nat’l Taiwan U (Taiwan)</td>
<td></td>
</tr>
</tbody>
</table>

Core institutions are designated academic and government research organizations with major research programs in earthquake science. Each core institution is expected to contribute a significant level of effort (both in personnel and activities) to SCEC programs, as well as a yearly minimum of $35K of institutional resources (spent in-house on SCEC activities) as matching funds to Center activities. Each core institution appoints an Institutional Director to the Board of Directors.

Participating institutions do not necessarily receive direct support from the Center. Each participating institution (through an appropriate official) appoints a qualified Institutional Representative to facilitate communication with the Center. The interests of the participating institutions are represented on the Board of Directors by two Directors At-Large.

Apply as a Participating Institution

E-mail application to John McRaney [mcraney@usc.edu]. The application should come from an appropriate official (e.g. department chair or division head) and include a list of interested faculty and a short statement on earthquake science research at your institution. Applications will be approved by a majority vote of the SCEC Board of Directors.
SATURDAY, September 7
10:00-19:00 Pre-Registration Check-In (Lobby)

SUNDAY, September 8
07:00-18:30 Registration and Check-In (Lobby)
07:00-08:00 Breakfast (Poolside)
08:00-20:00 Poster Set-Up (Plaza)
08:00-12:00 Workshop: Source Inversion Validation (Horizon I)
 Workshop: SCEC Broadband Platform (Horizon II)
12:00-13:00 Lunch (Restaurant and Poolside)
13:00-17:00 Workshop: Earthquake Simulators (Horizon I)
 Workshop: Ground Motion Simulation Validation (Horizon II)
17:00-18:00 Annual Meeting Ice-Breaker (Lobby, Harvey's, Plaza)
18:00-19:00 Distinguished Speaker Presentation (Horizon)
19:00-20:30 Welcome Dinner (Poolside)
19:00-21:00 SCEC Advisory Council Dinner Meeting (Tapestry)
21:00-22:30 Poster Session (Plaza)

MONDAY, September 9
07:00-08:00 Registration and Check-In (Lobby)
07:00-08:00 Breakfast (Poolside)
08:00-11:00 Session: The State of SCEC (Horizon)
11:00-13:00 Session: Stress Transfer from Plate Motion to Crustal Faults:
 Long-Term Fault Slip Rates (Horizon)
13:00-14:30 Lunch (Restaurant, Tapestry, Poolside)
14:30-16:00 Session: Stress-Mediated Fault Interactions and Earthquake
 Clustering: Evaluation of Mechanisms (Horizon)
16:00-17:30 Poster Session (Plaza)
19:00-21:00 SCEC Honors Banquet (Poolside)
21:00-22:30 Poster Session (Plaza)

TUESDAY, September 10
07:00-08:00 Breakfast (Poolside)
08:00-09:30 Session: Evolution of Fault Resistance During
 Seismic Slip: Scale-Appropriate Laws for Rupture
 Modeling (Horizon)
09:30-11:00 Session: Structure and Evolution of Fault Zones and
 Systems: Relation to Earthquake Physics (Horizon)
11:30-13:00 Session: Causes & Effects of Transient Deformations:
 Slow Slip Events and Tectonic Tremor (Horizon)
13:00-14:30 Lunch (Restaurant, Tapestry, Poolside)
14:30-16:00 Session: Seismic Wave Generation and Scattering:
 Prediction of Strong Ground Motions (Horizon)
16:00-17:30 Poster Session (Plaza)
19:00-21:00 Dinner (Poolside)
19:00-21:00 SCEC Advisory Council Dinner Meeting (Boardroom)
21:00-22:30 Poster Session (Plaza)

WEDNESDAY, September 11
07:00-08:00 Poster Removal (Plaza)
07:00-08:00 Breakfast (Poolside)
08:00-09:30 Session: Earthquake Early Warning and Risk
 Communication (Horizon)
09:30-11:00 Session: The Future of SCEC (Horizon)
11:00 Adjourn 2013 SCEC Annual Meeting
11:30-13:30 SCEC PC Lunch Meeting (Palm Canyon)
 SCEC Board Lunch Meeting (Tapestry)