

SCEC Seismic Hazard Analysis Platforms

Kevin Milner

Many collaborators, including Ned Field, Bruce Shaw, Christine Goulet, Tom Jordan, Scott Callaghan, Phil Maechling November 18, 2022

PSHA Components

- Probabilistic Seismic Hazard Analysis (PSHA) involves two main model components:
 - 1) Earthquake *Rupture* Forecast

Gives the probability of all possible earthquake ruptures throughout the region and over a specified time span

2) Earthquake **Shaking** model

For a given earthquake rupture, this gives the probability that an intensity-measure type will exceed some level of concern

PSHA Pathways

Traditional PSHA

(Milner et al., 2021, *BSSA*)

PSHA Pathways

Traditional PSHA

(Milner et al., 2021, *BSSA*)

Building an ERF With Few Observations

- Many mapped faults in California
- Limited historical observations of large earthquakes (~200 years)
- Some data constraints available:
 - Slip rate estimates
 - Paleoseismic recurrence studies
 - Observed seismicity
- Many assumptions required:
 - Fault magnitude-frequency distributions
 - Multi-segment & multi-fault ruptures?
 - Recurrence interval distributions
 - ...many others

USGS Quaternary Faults (past 1.6 million years)

UCERF3 & NSHM23: Fault System Inversion

- Uniform California Earthquake Rupture Forecast (UCERF3)
 - Most recent published ERF for California
 - Solved for rupture rates through inversion
 - Includes multi-fault ruptures
- 2023 Update to the National Seismic Hazard Model (NSHM23)
 - Improves upon UCERF3, extends inversion methodology to WUS active faults
- Better data fits than prior models, but highly uncertain and many assumptions
- See: Field, Milner, and Page (2021)

PSHA Pathways

Traditional PSHA

(Milner et al., 2021, BSSA)

Empirical Ground Motion Models

- Estimate the log-mean and standard deviation of shaking at a site of interest, conditioned on the occurrence of an earthquake
- Regress against observations
 - Rupture-site distance
 - Magnitude
 - Site effect proxies
 - V_{S30} , $Z_{1.0}$, $Z_{2.5}$
 - Fault type
 - strike-slip, normal, reverse

Empirical Ground Motion Models

- Estimate the log-mean and standard deviation of shaking at a site of interest, conditioned on the occurrence of an earthquake
- Regress against observations
 - Rupture-site distance
 - Magnitude
 - Site effect proxies
 - V_{S30} , $Z_{1.0}$, $Z_{2.5}$
 - Fault type
 - strike-slip, normal, reverse
- Few data at short distances and large magnitudes, high scatter

Empirical Ground Motion Models

- Estimate the log-mean and standard deviation of shaking at a site of interest, conditioned on the occurrence of an earthquake
- Regress against observations
 - Rupture-site distance
 - Magnitude
 - Site effect proxies
 - V_{S30} , $Z_{1.0}$, $Z_{2.5}$
 - Fault type
 - strike-slip, normal, reverse
- Few data at short distances and large magnitudes, high scatter

Hazard Curves & \sigma-dependence

- Hazard curves are key output of PSHA
 - probability of exceeding (y-axis) various ground motions levels (x-axis)
 - Aggregate contributions from all sources in the ERF
- Tails of hazard curves are controlled by ground motion uncertainty
 - Hazard at typical 2% in 50 year return period is very sensitive to σ

Sigma Over Time

Strasser et al. (2009), annotated by Tom Jordan

Empirical Nonergodic PSHA

- Work is underway to reduce σ in well instrumented areas
- Difficult to extrapolate to large earthquakes that dominate hazard

CyberShake 3D Deterministic Simulations

- Deterministic 1 Hz simulations in a 3-D velocity model
 - ADP-ODC-GPU simulation code
 - SCEC CVM-S4.26-M01 velocity model
- CyberShake uses seismic reciprocity
 - Impulse is positioned at site (2 3D simulations to recover x and y component) and recorded at each source patch
 - Useful when $N_{\text{sites}} << N_{\text{ruptures}}$
 - Assumes linearity

PSHA Pathways

(Milner et al., 2021, BSSA)

Traditional CyberShake Studies

- Extend empirical ERFs with a kinematic rupture generator
 - Graves & Pitarka (2010, 2014, 2016)
- UCERF2 ERF
 - Does not currently support multi-fault ruptures from UCERF3
- Extract intensity measures from synthetic seismograms to compute hazard curves

A Different Approach: RSQSim

- Rate State earthQuake Simulator
 - Richards-Dinger & Dieterich, 2012
- Physics-based multi-cycle simulator
 - Tectonic loading of faults by backslip approximation
 - Rupture nucleation by rate- and state-dependent friction
 - Dynamic overshoot
 - Stress transfer in homogeneous elastic halfspace
- No prescribed ruptures/MFDs
- Synthetic catalogs of thousands to
 millions of years of earthquake sequences

Animation of 3,000 years of RSQSim ruptures in CA (100 years per second)

PSHA Pathways

(Milner et al., 2021, BSSA)

GMM Hazard Maps Comparison

Peak Ground Acceleration (g) with 2% probability of exceedance in 50 years

(Shaw et al. 2018, Science Advances)

GMM Hazard Maps Comparison

Peak Ground Acceleration (g) with 2% probability of exceedance in 50 years

(Shaw et al. 2018, Science Advances)

RSQSim Rupture Slip-Time Histories

- RSQSim provides full slip-time histories for all ruptures
 - Example (right): M7.45 on SAF Mojave
- Can be used directly as input to deterministic ground motion simulations
- Unlike kinematic rupture generators, no prescribed rupture properties
 - Stress drop, hypocenter, roughness, etc, dependent on global frictional parameters and state of stress at nucleation

PSHA Pathways

(Milner et al., 2021, BSSA)

Regional Hazard Map

- First hazard map constructed with physics-based models
 - RSQSim source model
 - CyberShake ground motion simulation
- Study performed over 29 days
 - Used OLCF Summit supercomputer
- 65,500 node-hours used
 - At peak, 46% of Summit
- Prototype study: Milner et al. (2021)

Hazard & Variability

Site z-scores, σ -fracts, and hazard

Hazard Comparison

- Even if not ready for direct use, simulation-based comparison models are already valuable when building empirical models
 - Even if they're "wrong" they can be useful
- Most useful if they work at the same regional and time scales as empirical models

- RSQSim used to inform multifault rupture plausibility model for NSHM23
 - Milner et al. (2022)

- Magnitude-dependent elastic rebound aperiodicity informed UCERF3-TD
 - Field et al. (2015)

- UCERF3-ETAS question: can larger aftershocks nucleate within the zone of a prior rupture?
 - Field et al. (2015)
 - RSQSim says it's possible, but most likely at the edges of the prior rupture

- How does moment release vary over time?
- Can supercycles explain the paleoseismic hiatus
 - Biasi and Scharer (2019)

Conclusions

- May pathways currently in use and development for PSHA
- Ultimately, simulation-based may be the best way to reduce uncertainties as models improve
- Alternative models are needed, and will be most useful if they can simulate many seismic cycles on a large and complex fault network

SC/EC Southern California AN NSF+USGS CENTER Earthquake Center