Variations of stress parameters in the Southern California plate boundary around the South Central Transverse Ranges

Niloufar Abolfathian

Collaborators: Patricia Martínez-Garzón, Yehuda Ben-Zion

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
2GFZ German Research Centre for Geosciences, Potsdam, Germany
3University of Southern California, Los Angeles, USA
4Southern California Earthquake Center

SCEC Cajon Pass Earthquake Gate Area, September 4th, 2020
Introduction:
Inverting focal mechanisms for the principal stress orientations

Objectives:
- Obtaining a reliable, high-resolution information about stress parameters South Central Transverse Ranges (SCTR)
- Coming up with ingredients affecting the stress in the crust
Methodology:

A linear damped stress inversion on the earthquake focal mechanisms (MSATSI software)

Determines the orientation of the principal stresses and the stress ratio:

\[R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3} \]

- Using declustered seismicity.
- Selecting the fault plane with the largest fault instability
- Discretizing the focal mechanisms using the optimum number of events per grid cell

Hardebeck and Michael, 2006; Michael, 1984; 1987; Martínez-Garzón et al., 2014; Vavrycuk, 2014
Seismicity Distribution in the SCTR:

South Central Transverse Ranges (CP, SGP):
Years: 1981 to 2017
SCTR: ~3,200 focal mechanisms
Aftershocks: ~9,600 focal mechanisms
declustered catalog

CP: Cajon Pass
SGP: San Gorgonio Pass
SGM: San Gabriel Mountains
SBM: San Bernardino Mountains
SJM: San Jacinto Mountains

- Seismicity catalog by Hauksson et al., (2012)
- Earthquake focal mechanisms catalog by Yang et al., (2012).
- Declustered following Zaliapin and Ben-Zion, (2013).
Key point:

In Strike-slip regime: \(R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3} \)

R increases \((R \to 1)\), stress regime towards transpressional.
R decreases \((R \to 0)\), stress regime towards transtensional.
Depth Dependent Stress Ratio (R) in SCTR:

Key point:
Transpressional stress regime adjacent to the highest topography.

Sharp changes in stress ratio near Cajon Pass.

In Strike-slip regime: \(R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3} \)
- R increases (R \(\rightarrow \) 1), stress regime towards transpressional.
- R decreases (R \(\rightarrow \) 0), stress regime towards transtensional.
Depth Dependent Stress Ratio (R) in SCTR:

Key point:
Transpressional stress regime adjacent to the highest topography.
Sharp changes in stress ratio near Cajon Pass.

In Strike-slip regime: \[R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3} \]
- R increases (R → 1), stress regime towards transpressional.
- R decreases (R → 0), stress regime towards transtensional.
Maximum Horizontal Compressional Stress (S_{Hmax}) in SCTR:

Key point:
Rotation of the S_{Hmax} near the Crafton Hills area.

No other significant rotation in the S_{Hmax} direction in SCTR.

Changes in the stress plunge angles below 15 km depth.

S_{Hmax} is estimated following Lund and Townend (2007)
Stress Distribution in SCTR:

Data separated in six sub-regions based on geological structures and seismicity distribution:
Stress Distribution in SCTR:

Data separated in six sub-regions based on geological structures and seismicity distribution:
Key point:

Stress Distribution in SCTR:

Amplified compressional stress components near CP and the sharp stress ratio changes between the NW and SE of the junction of the SAF and SJFZ.
Key point:
Amplified compressional stress components near CP and the sharp stress ratio changes between the NW and SE of the junction of the SAF and SJFZ.
Key point:

Variations of the stress ratio results versus elevation. The relationship between the two variables are significant with a p-value of <0.0001, where 25% of the stress ratio variability may be explained by the topography.

Stress Distribution in SCTR:

Abolfathian et al., 2020
Key point:
Variations of the stress ratio results versus elevation. The relationship between the two variables are significant with p-value of <0.0001, where 25% of the stress ratio variability may be explained by the topography.

Stress Distribution in SCTR:

Abolfathian et al., 2020
The total stress field (τ_T) can be written:

$$\tau_T = \tau_R + \tau_L + \Delta\tau_{ST}$$

($\tau_R + \tau_L$) : the background stress field associated with the loading components

τ_R : regional far-field loading
τ_L : loading due to local features such as topography
$\Delta\tau_{ST}$: stress transfer from earthquakes in the considered crustal volume

Abolfathian et al., 2020
The total stress field (τ_T) can be written:

$$\tau_T = \tau_R + \tau_L + \Delta\tau_{ST}$$

($\tau_R + \tau_L$): the background stress field Associated with the loading components

τ_R: regional far-field loading
τ_L: loading due to local features such as topography
$\Delta\tau_{ST}$: stress transfer from earthquakes in the considered crustal volume

Abolfathian et al., 2020
Provides information on the dominant loading mechanisms of the mainshocks that drive the aftershocks.
Discussion

• Stress field deviations from the regional strike-slip faulting are consistent with larger damage zone areas.

Ben-Zion and Zaliapin, 2019
Discussion

- Stress field deviations from the regional strike-slip faulting are consistent with larger damage zone areas.

- Temporal changes in the SCTR during the ~37 years

Ben-Zion and Zaliapin, 2019
Summary

• Local stress deviations from the regional stress field provide information on dominant local loadings.

• **Significant variations of stress parameters with depth:**
 Transpressional stress components in regions with high topography, similar observed in Cajon Pass, San Gorgonio Pass and near Hot Springs area.

• **Higher topography produces compressional stress components at the bottom of the seismogenic zone.**

• **Sharp variation in stress ratio near Cajon Pass!!**

• Comparing stress field inversions using declustered seismicity and aftershocks help to identify the main loading in an area.

• The spatio-temporal variations of background stress field are also examined and found to be in general in agreement with the discussed spatial background stress field variations

Selected References:

