San Bernardino basin focal mechanisms reveal signals of interseismic loading and the 1812 Wrightwood earthquake

Michele L. Cooke, Jennifer L. Hatch and Hanna M. Elston

Normal slip focal mechanisms?

Microseismicity (Yang et al. 2012 and subsequent updates) has unexpected normal slip events within the San Bernardino basin between two major strike-slip faults.

Geophysical Research Letters

RESEARCH LETTER 10.1029/2018GL078932

Key Points:

Crustal deformation models demonstrate the plausibility of deep creep along the northern San Jacinto fault to account for nearby enigmatic

Off-Fault Focal Mechanisms Not Representative of Interseismic Fault Loading Suggest Deep Creep on the Northern San Jacinto Fault

M. L. Cooke¹ and J. L. Beyer¹

¹Geosciences Department, University of Massachusetts Amherst, Amherst, MA, USA

Forward interseismic models with 20 km locking depth predict strike-slip events at the locations of the observed microseismicity.

From Cooke and Beyer (2018)

Catalog Completeness

3514 declustered events

- Spatial and temporal rescaling following Baiesi & Paczuski [2004] using parameters from Zaliapin & Ben Zion (2013)
- K-means using squared Euclidean distance to identify clusters
- Choose largest magnitude event in each cluster

Depth variation within the San Bernardino basin

Interseismic loading produces strike-slip stress state above the locking depth.

From Abolfathian et al 2018

Long-term basin extension

Long term deformation over multiple earthquake cycles shows dilation within the San Bernardino basin.

Since normal slip events occur primarily below 8 km depth could the San Jacinto have creep below this depth?

b San Andreas Carry

San Andreas Carry

Description of the Control of the Control

From Cooke and Beyer (2018)

With SJ locking depth 10km SA 20 km

Interseismic forward model predictions

Easting (km), zone 11 uniform random noise (+/- 0.5) added to the model predictions to account for heterogeneity

From Cooke and Beyer (2018)

Wrightwood 1812 earthquake

Rupture extent and slip distribution based on Onderdonk et al., (2013 & 2015) Rockwell et al. (2016) and Lozos (2016)

Hatch et al. (2020) show that recent earthquakes contribute to total stress state on nearby faults

Two contributions to stress state

Uniform random noise added to model results +/- 0.5

Recent events & interseismic loading -> stress state

microseismicity may change over EQ cycle time

Regional stress state unreliable where fault behavior and geometry are complex

The regional stress state inaccurately predicts strike-slip microseismicity in the San Bernardino basin.

Stress state depends on interseismic loading & recent earthquakes ← on and off of faults

