Tectonic-geomorphic mapping along the northernmost San Jacinto fault zone and implications for slip distribution

Drake Kerr and Nate Onderdonk
Northernmost San Jacinto fault zone (SJFZ)

Glen Helen fault

Middle San Jacinto fault

Lytle Creek fault
Methods

• Map geomorphic features related to tectonic activity
 • Aided by B4 and San Bernardino County LiDAR surveys
• Use existing consultant trench logs to locate faults in subsurface
• Identify potential paleoseismic and slip rate sites
Glen Helen fault

- 5m high scarp (southwest side up) can be followed for over 1km
- Potential slip rate site (starred location)
 - Stream channel crosses scarp
- Trenching exposed the Glen Helen fault, as well as an older, inactive fault zone
Glen Helen fault

- Offset of Holocene alluvium and modern “A” soil observed in trench 1 (Gary S. Rasmusen & Associates Inc., 1992)
Glen Helen fault

- Linear mountain front along Cajon Creek where fault is buried under alluvial fans
- Buried under terrace deposits in Cajon Creek
- 1m high uphill-facing scarps (south side up) in colluvium
- Fault is buried under terrace deposits to northwest
Middle San Jacinto fault

- Main trace is buried under recent alluvium
- Other traces are expressed as linear mountain fronts and benches
- Fault study by LOR Geotechnical Group Inc. (1994)
 - Trench 2 exposed cut layers of recent alluvium within 9.5 feet (2.9m) of the surface.
 - Detrital charcoal ages place the last surface rupture between calendar years 1380 and 1810 CE
Middle San Jacinto fault

• Splits into 3 strands

• North strand is buried under recent alluvium

• Middle strand deflects channels in old channel bar
 • 15-25m right-lateral displacement
 • Attempts to date channel bar were unsuccessful

• South strand deforms older lobes of an alluvial fan
 • Scarp is 3m high (NE side up)
 • No evidence of lateral displacement
Middle strand of SJF shows northeast side up component

- Uphill-facing scarps on northeast side of ridge

- Erosion fronts on southwest side of ridge
 - Likely initiated when northeast side up fault motion over-steepened slope
 - Erosion fronts propagate upslope
Middle San Jacinto fault

- Uphill facing scarp cuts one landslide, and is covered by several younger landslides
- Scarp extends semi continuously for 4.5 km
- Furthest NW extent of SJFZ
Lytle Creek fault

- Slip rate study by Mezger and Weldon (1983) yielded result of 2.5mm/yr
- Deflected streams in terrace deposits
- Lytle Creek fault is mostly expressed as fault benches
Analyzing distribution of geomorphic evidence

• Divide field area into 1km blocks along strike
• Count features per km block
• Classify strong vs possible evidence
 • Strong evidence: fault scarp, cut Quaternary deposit, offset stream, trench log, sag, shutter ridge
 • Possible evidence: bench, saddle, deflected stream, bedrock offset, linear mountain front
• Count strong evidence as 1, and possible evidence as 0.5
Discussion

- Middle strand San Jacinto fault displays the most geomorphic evidence of being recently active.
Discussion

- Geomorphic expression across the 3 strands of the SJFZ steadily increases to the southeast over a zone at least 20km long

- If geomorphic expression is a proxy for fault slip, this suggests slip is transferred to SJFZ gradually
Conclusions

• Geomorphic expression across the 3 strands of the SJFZ steadily increases to the southeast over a zone at least 20km long
• Middle strand SJF displays the strongest geomorphic evidence of being recently active
• Middle strand SJF had a ground rupturing earthquake between calendar years 1380 and 1810 CE (LOR Geotechnical Group Inc., 1994)
• Middle strand SJF displays northeast-side up component
Thank you!
References

Clopine, G.A., 1987, Geologic/seismic report for parcel #5, parcel map no. 6983, 9.9 acres, a portion of the northeast quarter of section 22, township 2 north, range 6 west, S.B.B. & M. Lytle Creek Area, San Bernardino County, California:

Johnston, J.J., and Leuer, J.P., 1994, Geologic fault investigation Sycamore Flats area San Bernardino County, California:

Jordan, F.F., and Martin, J.J., 1992, Subsurface engineering geology investigation proposed amphitheater approximately 45 acres Glen Helen Regional Park Devore, California:

Matti, D.M.M.J.C., 2001, Geologic Map of the Devore 7.5' quadrangle, San Bernardino County, California:

References

Sedki, Z., 2013, LiDAR and field investigation along the San Andreas Fault, San Bernardino/Cajon Pass area, Southern California: California State University, Long Beach.

