SURE Database

A compilation of field-based datasets for PFDHA and further development

A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault Displacement Hazard Analyses

by Stéphane Baize, Fia Nummenen, Alexandra Sarmiento, Timothy Dawson, Makoto Takao, Oona Scotti, Takashi Azuma, Paolo Boncio, Johann Champenois, Francesca R. Cinti, Riccardo Civico, Carlos Costa, Luca Guerrieri, Etienne Marti, James McCalpin, Koji Okumura, and Pilar Villamor

Seismological Research Letters doi: 10.1785/0220190144

Stéphane Baize
Geologist
Key points

- **User-friendly format**
 - Shapefiles and tables can be easily implemented by worldwide geologists with their own datasets

- **Open access**
 - SRL Data mine paper
 - ESC Fault2SHA website

- **Long-living**
 - European Seismological Commission (ESC) guarantee
 - IRSN – french public institution- will take over

- **Content**
 - 45 earthquakes from magnitude 5–7.9
 - More than 15,000 coseismic surface deformation observations & and 56,000 of segments
 - 22 earthquake cases are from Japan, 15 from United States, 2 from Mexico, Italy, and New Zealand, 1 from Kyrgyzstan, Ecuador, Turkey, and Argentina.
 - 24 earthquakes are strike-slip faulting events, 11 are normal, and 10 are reverse faulting

→ PhD thesis of Fiia Nurminen: new historical cases, especially reverse faults (~10), will be soon implemented
Principal rupture (net slip up to 2.1 m)

Secondary and antithetic rupture (net slip <0.6 m)

Shapefile of rupture segments with related table

Observation points

Shapefile of slip measurements with related table

M6.5 Norcia earthquake (Italy)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
</table>
| Basic Information | - **Id**: Segment ID
- **IdS**: Observation of rupture ID
- **IdO**: Date of observation
- **Id**: Initial Reference
- **ObS**: Source of data
- **ObO**: ID provided by observer
- **Long**: Longitude in decimal degrees (WGS84)
- **Lat**: Latitude in decimal degrees (WGS84)
- **Elev**: Elevation in meters
- **Slp**: Strike slip (SS)
- **Ssl**: Sense of slip (SS)
- **Uc**: Uncertainty horizontal (+/-) (SS) in meters.
- **Mn**: Max and min values (SS) in meters.

| Horizontal component of fault displacement | - **Large-aperture offset (SS) and uncertainty**: Corresponds to the total strike component of fault displacement, including that on the discrete fault plane and off-fault flexure, if any.
- **Aperture Width (SS)**: Width of the band where large-aperture offset is accommodated.
- **Fault-normal component (heave) (FNS) and sense of relative displacement**: In meters.
- **Scl**: Shortening (S) or lengthening (L)
- **Opr**: Opening
- **Vth**: Vertical throw (VT) (m)
- **Vup**: Upside
- **Vuc**: Uncertainty vertical (+/-) (VT) in meters.
- **Mn**: Max and min vertical (VT) in meters.
- **Large-aperture Offset (VT) (m) and uncertainty**: Corresponds to the total vertical component of faultsurface displacement (throw), including that on the discrete fault plane and off-fault flexure, if any.
- **Aperture Width (VT)**: Width of the band where large-aperture offset is accommodated.
- **Vsl**: Vertical slip (VS) (m) and uncertainties in meters. Free-face slip fail.

+ many other variables (local geology, structural complexity, ...)

![Discrete slip](image)
Contribution of Optical Correlation data to SURE Analysis of off-fault deformation in the triple junction area of 2016 M7.8 Kaikoura earthquake rupture

1. Definition of a single Main Fault trace (Cosi-Corr, ROI)

2. 120 swath profiles, 90 m wide, defined each 500 m; length ~ 9 km

- Pléiades (post) v SPOT (pre)
- MicMac software
- Spatial resolution 1.8 m
Profile analysis

- ENVI-CosiCorr ‘Stacking profiles’ tool
 - Horizontal components of slip only
- Export profiles data to Excel
 - Adjust the far-field fit on each side of defined fault (ROI)
 - Analyze simultaneously both components
 - Estimate uncertainties

<table>
<thead>
<tr>
<th></th>
<th>Width FROM CENTER (km)</th>
<th>550 pixel</th>
<th>250 pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>0.990 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right side</td>
<td>0.450 km</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deformation Width 1.4 km

Parallel Slip 12 m
Fault slip and deformation width

- In places, total deformation is accommodated over large widths (1-3 km) according to geodesy

- Dextral motion on Kekerengu-Jordan
- Sinistral motion on Papatea
- Contraction around Kekerengu and Papatea
- Lengthening around Jordan & triple junction
• Slip distribution Jordan-Kekerengu
 – Total deformation (red curve) from geodesy exceeds field-measured values
 – Deformation zone widens north of the Papatea / Jordan intersection
SURE and its future

• Improvement
 – Complete the existing database with local geology & structural complexity information
 – New cases with field-based data

• Optical Correlation data
 – In which form?
 • Latitude, Longitude of intersection point between fault and profile
 • ‘Large aperture width’ and ‘Large aperture offset’
 – Pros
 • Complete the field measurements with a dense set of values spanning the whole rupture
 • Heave is accessible (often difficult to measure in the field)
 – Cons
 • No access to vertical component for most of the captured earthquakes
 • Depending on images’ resolution, direct access to the balance between discrete slip and warping may not be accessible without field measurement
 • Existing tool (Cosi-Corr) could be adapted for fault displacement analysis

• Collaboration
 – International community (SURE) <-> U.S. PFDHI community
 • Exchange of data and concepts
 • Common publications