Assessment of Community Velocity Models through the lens of Ground Motion Simulation Validation
CVM TAG and Workshops

There is or has been…

• substantial effort into development of CVM-H (15.1.0) and CVM-S (4.26);
• incremental improvements in CVM-H, but CVM-S is essentially frozen;
• development of a central California CCA CVM (version 6); and
• a UCVM framework to access these CMVs (Small et al., 2017).

The TAG goals are…

• to develop open methods for improving CVMs;
• to develop methods for CVM assessment and validation (including uncertainty); and
• to expand participation in work related to improving and utilizing CVMs.

To make further progress on these CVMs we need…

• open-source workflows to evaluate and/or update models;
• methods to merge models (of different resolution);
• strategies to integrate constraints from other geophysical, geotechnical, and geological sources; and
• methods for assessing model uncertainty.

The 2018 workshop objectives were…

• to assess the current status of CVMs;
• to define information needed to improve and/or develop CVMs;
• to propose workflow strategies for CVM development; and
• to identify approaches for assessing CVM uncertainties.

An essential next step was the formation of a TAG tasked with further developing and collectively carrying out coordinated activities to improve and validate CVMs.

This 2019 workshop objectives are…

• to reach final consensus on TAG mission and goals;
• to refine and prioritize the identified action items; and
• to coordinate plans for submission of proposals.
There is or has been…

- substantial effort into development of CVM-H (15.1.0) and CVM-S (4.26);
- incremental improvements in CVM-H, but CVM-S is essentially frozen;
- development of a central California CCA CVM (version 6); and
- a UCVM framework to access these CMVs (Small et al., 2017).

The TAG goals are…

- to develop open methods for improving CVMs;
- to develop methods for CVM assessment and validation (including uncertainty); and
- to expand participation in work related to improving and utilizing CVMs.

To make further progress on these CVMs we need…

- open-source workflows to evaluate and/or update models;
- methods to merge models (of different resolution);
- strategies to integrate constraints from other geophysical, geotechnical, and geological sources; and
- methods for assessing model uncertainty.

The 2018 workshop objectives were…

- to assess the current status of CVMs;
- to define information needed to improve and/or develop CVMs;
- to propose workflow strategies for CVM development; and
- to identify approaches for assessing CVM uncertainties.

An essential next step was the formation of a TAG tasked with further developing and collectively carrying out coordinated activities to improve and validate CVMs.

This 2019 workshop objectives are…

- to reach final consensus on TAG mission and goals;
- to refine and prioritize the identified action items; and
- to coordinate plans for submission of proposals.
Chino Hills
Validation with CVM-S4
Multiple CVMs
Multiple events and additional models (CVM-S4, CVM-S4.26.M01, CVM-H, CVM-H+GTL)
Some lessons or insights...
Z1.0 km for San Bernardino basin
Do they matter?
<table>
<thead>
<tr>
<th>Sim. ID</th>
<th>CVM-S</th>
<th>$V_{S\text{min}}$</th>
<th>Pts. per wavelength</th>
<th>α in $Q_s = aV_s$</th>
<th>λ in $Q(f) = Q_0 f^\lambda$</th>
<th>Source</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4.26</td>
<td>200</td>
<td>10</td>
<td>50 (a)</td>
<td>0 (b)</td>
<td>0.8 (b)</td>
</tr>
<tr>
<td>S1</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S2</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S3</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S4</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S5</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S6</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S7</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S8</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S9</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S10</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S11</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S12</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>S13</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

(a) This corresponds to the attenuation model BKT2, which is frequency independent.
(b) This corresponds to the attenuation model BKT3, which can be frequency dependent if $\lambda \neq 0$.
CVM-S4.26.M01 vs. CVM-S4 (1@1 Hz CH-PS)

CVM-S4.26.M01 vs. CVM-S4 (1@4 Hz CH-ES)
Q as 100Vs vs. 50Vs (at 1 Hz for CH-PS)

BKT3 vs. BKT2 modeling (at 1 Hz for CH-PS)
Extended vs. point source (at 1 Hz for CH-PS)

Varying to Mw 5.5 vs. 5.4 (at 1 Hz for CH-PS)
200 m/s vs. 500 m/s (at 1 Hz for CH-PS)

10 PPWL vs. 20 PPWL (at 1 Hz for CH-PS)
...to many variables to look at
Data Analysis Participation (in Percent) for Select Trees

<table>
<thead>
<tr>
<th>Code</th>
<th>Metric</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T66</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Arias integral</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>C2</td>
<td>Energy integral</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>C3</td>
<td>Arias intensity</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>9.6</td>
</tr>
<tr>
<td>C4</td>
<td>Total energy</td>
<td>46.8</td>
<td>52.4</td>
<td>60.2</td>
<td>100.0</td>
</tr>
<tr>
<td>C5</td>
<td>Peak acceleration</td>
<td>—</td>
<td>21.5</td>
<td>21.5</td>
<td>72.2</td>
</tr>
<tr>
<td>C6</td>
<td>Peak velocity</td>
<td>—</td>
<td>—</td>
<td>37.0</td>
<td>56.3</td>
</tr>
<tr>
<td>C7</td>
<td>Peak displacement</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19.4</td>
</tr>
<tr>
<td>C8</td>
<td>Response spectrum</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>C9</td>
<td>Fourier spectrum</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>23.8</td>
</tr>
<tr>
<td>C10</td>
<td>Cross correlation</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>22.2</td>
</tr>
<tr>
<td>C11</td>
<td>Strong phase duration</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>