Selection of CyberShake ground motions for engineering practice

Jack W. Baker and Ganyu Teng
Uses of ground motions in earthquake engineering practice

Seismic sources

- Ground motions

Ground motion hazard analysis

Target response spectrum

- Study this portion
- Using recordings or simulations
- Satisfy ASCE 7-16 requirements for new building design

Structural performance

Ground motions

Response history analysis
Goals

Select time series from the CyberShake database that would satisfy ASCE 7-16 criteria, and evaluate their suitability for this purpose

Select comparable recorded ground motions, for comparative evaluations

Tall buildings are an the envisioned application
• Response history analysis is often used
• Simulations provide greatest insights at long periods
Two considered locations

Pasadena (PAS)
$V_{s30} = 748 \text{ m/s}$

Los Angeles Downtown (LADT)
$V_{s30} = 390 \text{ m/s}$
Record selection

11 two-component ground motions were selected

ASCE 7-16 site-specific MCE$_R$ spectrum from USGS.

A period range of 1 to 10s was matched.

Magnitude/distance somewhat constrained to match deaggregation

CyberShake ground motions were taken from the reference site’s simulations

NGA-West2 ground motions were scaled by up to 4x
Response spectra of all selected ground motions

LA Downtown

CyberShake

NGA-West 2

Pasadena

Target spectrum
Selected spectra

Sa (g)

Period (s)
Deaggregation versus selected records

LA Downtown

Site: LADT, Period: 1s

Site: LADT, Period: 5s

Site: PAS, Period: 1s

Site: PAS, Period: 5s

Pasadena

No. of records

No. of records

Contribution(%)
Some particular CyberShake ruptures produce excessively polarized ground motions. But for the record selection exercise these can be easily avoided.
Example CyberShake record #1 (Newport Inglewood)
Example CyberShake record #2 (Puente Hills)
Example CyberShake record #5 (Sierra Madre)
Example CyberShake record #10 (San Andreas)
Additional documentation

• We have a ground motion selection report with figures for every selected time series and response spectrum, plus tabulated data

• We would love to hear feedback from interested users

<table>
<thead>
<tr>
<th>Fault</th>
<th>Station Name</th>
<th>Magnitude</th>
<th>Distance (km)</th>
<th>Vs30 (m/s)</th>
<th>Scaling Factor</th>
<th>5-75% significant duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newport Inglewood Connected alt 2</td>
<td>LADT</td>
<td>7.25</td>
<td>11.1</td>
<td>390</td>
<td>1</td>
<td>7.2</td>
</tr>
<tr>
<td>Puente Hills</td>
<td>LADT</td>
<td>7.25</td>
<td>5.4</td>
<td>390</td>
<td>1</td>
<td>4.6</td>
</tr>
<tr>
<td>Puente Hills</td>
<td>LADT</td>
<td>7.35</td>
<td>5.4</td>
<td>390</td>
<td>1</td>
<td>8.2</td>
</tr>
<tr>
<td>Newport Inglewood Connected alt 2</td>
<td>LADT</td>
<td>7.45</td>
<td>11.1</td>
<td>390</td>
<td>1</td>
<td>7.7</td>
</tr>
<tr>
<td>Sierra Madre</td>
<td>LADT</td>
<td>7.45</td>
<td>19.1</td>
<td>390</td>
<td>1</td>
<td>10.6</td>
</tr>
<tr>
<td>Newport Inglewood Connected alt 1</td>
<td>LADT</td>
<td>7.25</td>
<td>13.3</td>
<td>390</td>
<td>1</td>
<td>5.3</td>
</tr>
<tr>
<td>Newport-Inglewood, alt 2</td>
<td>LADT</td>
<td>7.45</td>
<td>11.1</td>
<td>390</td>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>Newport Inglewood Connected alt 2</td>
<td>LADT</td>
<td>7.65</td>
<td>11.1</td>
<td>390</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>Puente Hills</td>
<td>LADT</td>
<td>7.15</td>
<td>5.4</td>
<td>390</td>
<td>1</td>
<td>3.6</td>
</tr>
<tr>
<td>S. San Andreas;PK+CH+CC+BB+NM+SM</td>
<td>LADT</td>
<td>8.15</td>
<td>55.7</td>
<td>390</td>
<td>1</td>
<td>22.4</td>
</tr>
<tr>
<td>S. San Andreas;CH+CC+BB+NM+SM+NSB+SSB</td>
<td>LADT</td>
<td>8.15</td>
<td>55.7</td>
<td>390</td>
<td>1</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Conclusions

• We have selected ground motions from the CyberShake database for sites in Los Angeles Downtown and Pasadena
 – Targeted for tall buildings analysis
 – Compliant with ASCE 7-16 Response History Analysis requirements

• Reference ground motions from NGA-W2 were also selected

• The CyberShake motions appear suitable for engineering use (other than excessive polarization in a few cases) and offer a much richer set of motions for large-magnitude and basin conditions

• Moving forward, we hope to solicit feedback from practicing engineers, and build users’ confidence in the simulations
Thoughts on selecting time series for the UGMS tool

- Site-specific motions or a general suite that can be further searched?
 - **Site-specific**—easier to provide a small suite, but for users with a different site or target spectrum, it may be challenging to use these

 - **General suite**—easier to provide the “large magnitude small distance” motions that are most useful, but may require further searching within the set by a user

- A question to you—how would you envision using CyberShake time series for your projects?