Introduction to the SCEC Ground Motion Simulation Validation (GMSV) TAG

SCEC GMSV TAG Planning Workshop, August 24, 2018, USC, Los Angeles, CA

Sanaz Rezaeian

Co-Leader of the GMSV TAG, Research Structural Engineer U.S. Geological Survey (USGS), Golden, CO

Jonathan Stewart (UCLA), Nicolas Luco (USGS), Christine Goulet (USC), Gregory Deierlein (Stanford) & Farzin Zareian (UCI)

Workshop Agenda

09:30 - 10:00	Welcome and Introductions (Sanaz Rezaeian)
10:00 - 12:00	GMSV Objectives and Path Forward for Ground Motion Characterization
10:00 - 10:20	- Background: SCEC Broadband Platform Validation and Outcomes (Christine Goulet)
10:20 - 10:40	- Vision: Future Validation Needs for Hazard Characterization (Yousef Bozorgnia)
10:40 - 11:30	- Breakout Group Discussions (All Attendees)
11:30 - 12:00	- Summaries from Breakout Groups
12:00 - 13:00	Lunch
13:00 - 15:00	GMSV Objectives and Path Forward for Engineering Applications
13:00 - 13:20	- Background: Use of SCEC Seismogram Simulations for Building Response Analysis (Nicolas Luco)
13:20 - 13:40	- Background: New Zealand GMSV Guidelines for Engineers (Sanaz Rezaeian)
13:40 - 14:00	- Vision: What Engineers Need in Terms of Sample Simulations and Guidelines for Use of
	Simulations (<i>Gregory Deierlein</i>)
14:00 - 14:30	- Breakout Group Discussions (All Attendees)
14:30 - 15:00	- Summaries from Breakout Groups
15:00 - 16:00	Summary and Conclusions (Jonathan Stewart)
16:00	Adjourn

Workshop Participants

Conveners:

- 1. Sanaz Rezaeian (USGS)
- 2. Jonathan Stewart (UCLA)
- 3. Nicolas Luco (USGS)
- 4. Christine Goulet (SCEC/USC)
- 5. Gregory Deierlein (Stanford)
- 6. Farzin Zareian (UCI)

Participants:

- 1. Rob Graves (USGS)
- 2. Kevin Milner (SCEC/USC)
- 3. John Vidale (SCEC)*
- 4. Yousef Bozorgnia (UCLA)
- 5. Katie Wooddell (PG&E)
- 6. Morgan Moschetti (USGS)
- 7. Ting Lin (Texas Tech)
- 8. Ali Sumer (OSHPD)
- 9. Jon Heintz (ATC)
- 10. Marty Hudson (AMEC)
- 11. Jongwon Lee (ARUP)
- 12. Anoosh Shamsabadi (HSRA)
- 13. Ertugrul Taciroglu (UCLA)
- 14. Cairo Briceno (Parsons)*
- 15. Steven McCabe (NIST)*
- 16. Farid Ghahari (UCLA)
- 17. Edric Pauk (SCEC)

Remote Participants:

- CB Crouse (AECOM)
- Albert Kottke (PG&E)
- Farzad Naeim (Naeim Assoc.)
- Josh Gebelein (Parsons)
- Pedro Arduino (UW)
- Domniki Asimaki (Caltech)
- Philip Caldwell (BSSC)

*not on the website!

Discussion Sessions

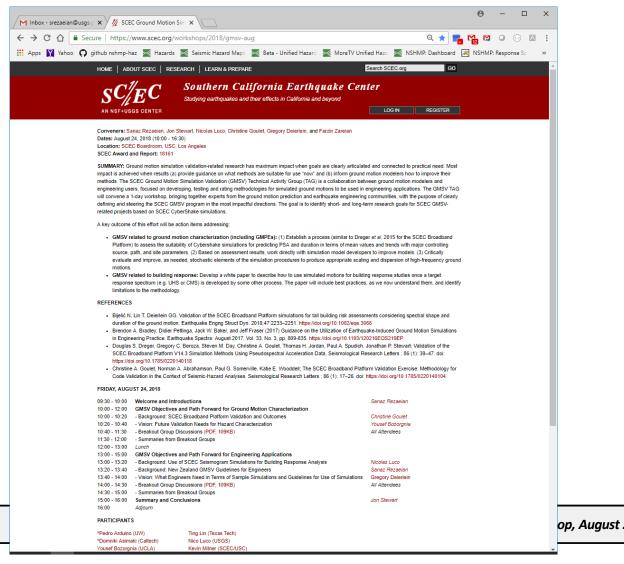
Group 1:

- 1. Yousef Bozorgnia (UCLA)
- 2. Nicolas Luco (USGS)
- 3. Farzin Zareian (UCI)
- 4. Anoosh Shamsabadi (HSRA)
- 5. Jongwon Lee (ARUP)

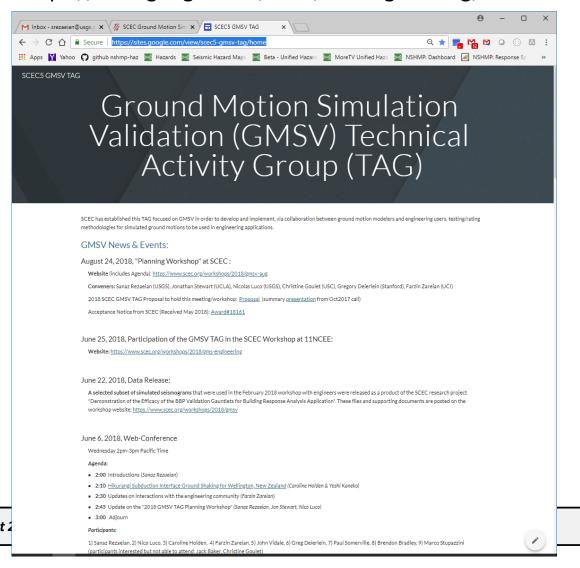
Remote Group 1*:

- CB Crouse (AECOM)*
- Farzad Naeim (Naeim Assoc.)
- Steven McCabe (NIST)
- Albert Kottke (PG&E)
- Josh Gebelein (Parsons)
- Pedro Arduino (UW)
- Domniki Asimaki (Caltech)
- Philip Caldwell (BSSC)

Group 2:


- 1. Jonathan Stewart (UCLA)
- 2. Gregory Deierlein (Stanford)
- 3. Sanaz Rezaeian (USGS)
- 4. Kevin Milner (SCEC/USC)
- 5. John Vidale (SCEC)
- 6. Ting Lin (Texas Tech)
- 7. Jon Heintz (ATC)
- 8. Farid Ghahari (UCLA)

Group 3:


- 1. Christine Goulet (SCEC/USC)
- 2. Katie Wooddell (PG&E)
- 3. Morgan Moschetti (USGS)
- 4. Ali Sumer (OSHPD)
- 5. Ertugrul Taciroglu (UCLA)
- 6. Cairo Briceno (Parsons)
- 7. Rob Graves (USGS)
- 8. Marty Hudson (AMEC)

Workshop Website & Resources

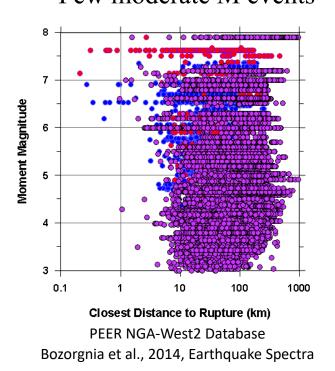
https://www.scec.org/workshops/2018/gmsv-aug

https://sites.google.com/view/scec5-gmsv-tag/home

Introduction to the SCEC Ground Motion Simulation Validation (GMSV) Technical Activity Group (TAG):

SCEC Seismogram Simulations

Current Differences	CyberShake	Broadband Platform	
Purpose	PSHA	Scenarios	
Methods	Graves & Pitarka	Several (7)	
Crustal model	3-dimensional	1-dimensional	
Frequency band	< ~1 Hz	0-100 Hz	
Computer needed	Supercomputer	Personal computer	
Validations	Relatively limited	Relatively extensive	


Table from Nico Luco.

Motivation for Simulation & Validation

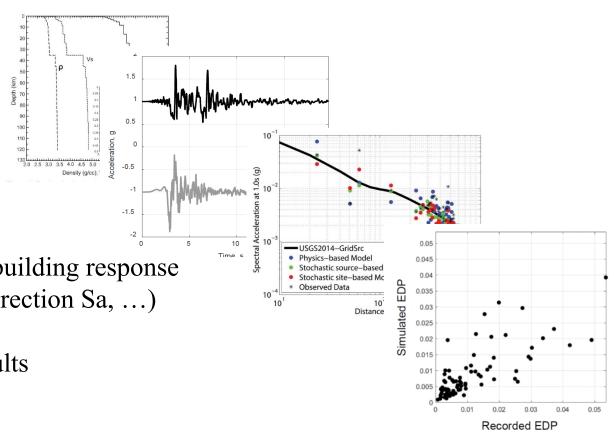
Simulated ground motions and their validations are needed when ...

Missing or limited recorded data:

No data for large M at close distance Few moderate M events

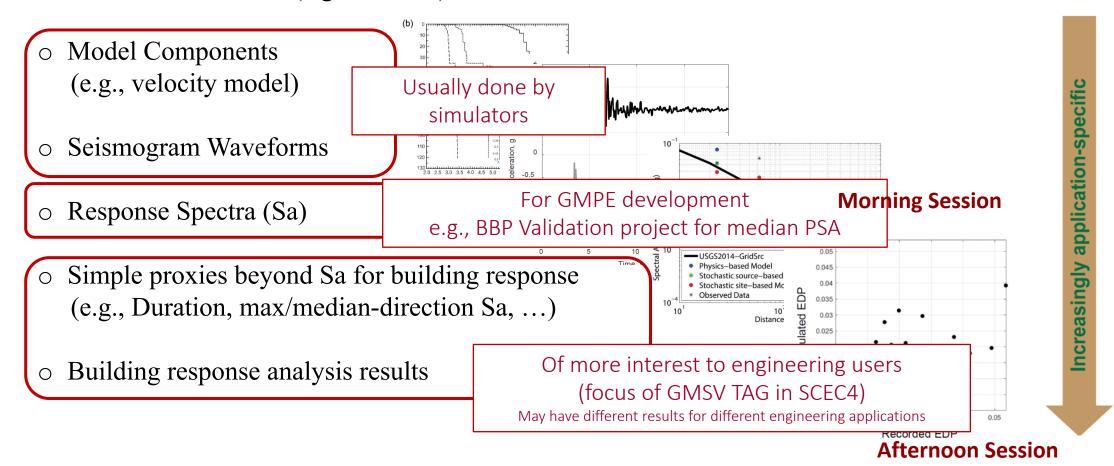
Need site/region specific motions:

Represent local directivity effects, basin effect, etc. as opposed to using motions from other locations



Earthquakes w/ M>6.0 since 1950 Usgs.gov

Validation of Simulations


Simulation methods can be validated by comparisons to "data from past earthquakes" or to "empirical models" based on such data (e.g., GMPEs). This can be done at various levels:

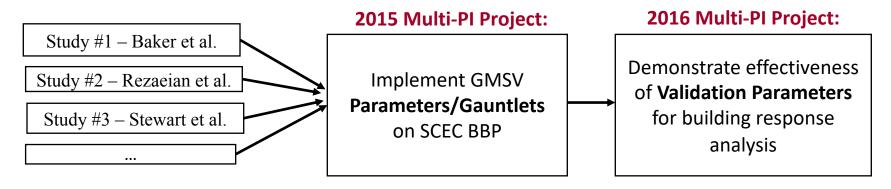
- Model Components (e.g., velocity model)
- Seismogram Waveforms
- Response Spectra (Sa)
- Simple proxies beyond Sa for building response (e.g., Duration, max/median-direction Sa, ...)
- Building response analysis results

Validation of Simulations

Simulation methods can be validated by comparisons to "data from past earthquakes" or to "empirical models" based on such data (e.g., GMPEs). This can be done at various levels:

SCEC GMSV TAG History

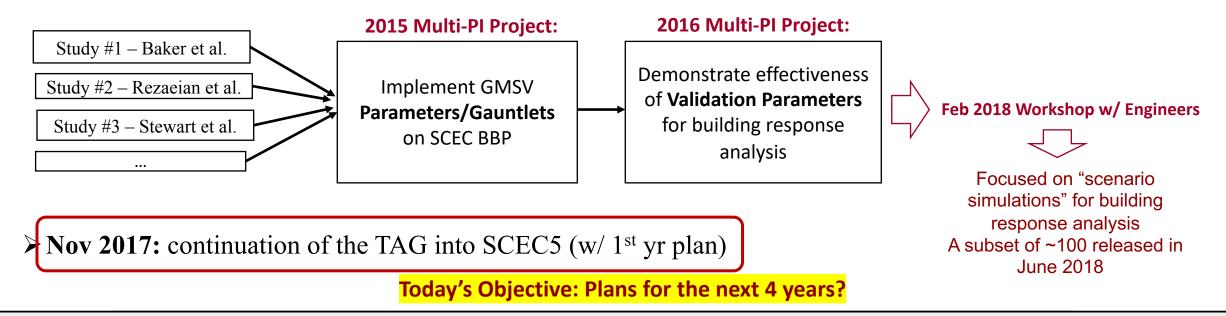
Established in **2010**, led by Nico Luco (USGS), to develop and implement testing/rating methodologies for validation of simulation <u>methods</u> for <u>engineering applications</u>


- Collaboration between ground motion simulators and engineering users
- ➤ 2011-2014+: Individual proposals focused on 3 broad engineering applications (coordinated under TAG)
 - 1. Validation based on SDOF / Simple Proxies
 - 2. Validation based on MDOF responses
 - 3. Validation based on geotechnical systems

stems		GMSV done for three kinds of responses:			
		SDoF / Simple Proxies	MDoF	Geotech	
Testing Methods	Historical Earthquakes	Rezaeian et al. (2014)	projects (also	Rathje et al. (2013)	
	Empirical Models	Baker et al. (2013-15)	related projects (also related here.	Stewart et al. (2013-15) Rathje et al. (2013)	
	Similar Spectra	Mamy mor	Zareian et al. (2013-15) Deierlein et al. (2014) Baker et al. (2013-15)		

SCEC GMSV TAG History

Established in 2010, led by Nico Luco (USGS), to develop and implement testing/rating methodologies for validation of simulation <u>methods</u> for <u>engineering applications</u>


- Collaboration between ground motion simulators and engineering users
- > 2011-2014+: Individual proposals focused on 3 broad engineering applications (coordinated under TAG)
- ➤ 2015-2016: Multi-PI projects started to build on the knowledge from previous projects

SCEC GMSV TAG History

Established in 2010, led by Nico Luco (USGS), to develop and implement testing/rating methodologies for validation of simulation <u>methods</u> for <u>engineering applications</u>

- Collaboration between ground motion simulators and engineering users
- ➤ 2011-2014+: Individual proposals focused on 3 broad engineering applications (coordinated under TAG)
- ➤ 2015-2016: Multi-PI projects started to build on the knowledge from previous projects

Coordination with other groups

- ➤ SCEC Broadband Platform Validation Project (BPVP)
 - o using BBP
 - Christine Goulet's presentation (2 background papers emailed to everyone)
- > SCEC Utilization of Ground Motion Simulations (UGMS)
 - using CyberShake
 - o chaired by CB Crouse
- > International groups: New Zealand, Italy, ...
 - o 2016 workshop at SCEC annual meeting
 - o a background paper emailed to everyone
- ➤ Interactions w/ USGS to implement simulations in PSHA
 - o Morgan Moschetti's WG

Outcome & Future Direction

Outcome of SCEC 4 (2010-2016):

- Initiated a feedback loop with some model developers (through individual PI interactions)
- o Implemented validation parameters/gauntlets on the SCEC BBP (through multi-PI projects)
- Generated scenario simulations for engineering users for large M events (through multi-PI projects)
- Achieved more confidence in using simulations for hazard (BPVP) and for structural analysis (Feb workshop)

Future Direction in SCEC 5 (the next 4 years and beyond):

- o Consider validation related to both <u>"ground motion prediction"</u> and <u>"engineering applications"</u> within the same group
- O Validation related to ground motion characterization:
 - Identify areas of bias in ground motion predictions from simulations (include standard deviations)
 - Improve simulation procedures (BBP & Cybershake) and support GMPE development
 - Spatial correlations of IMs for application to distributed infrastructure
- Validation related to <u>engineering utilization</u>:
 - More specific engineering applications similar to the Feb workshop?
 - Help engineers to gain confidence in utilizing simulations (PSHA, RHA, etc). Guidelines for engineers?

Today's Objectives

The objective of this workshop is to define goals of the GMSV program(s) in SCEC, and to identify short- and long-term research that is needed, which will build on past/current work.

- ➤ How should the TAG be organized/operate?
- Ideas for SCEC RFP for individual PI proposals?
- Multi-PI proposals to SCEC? (e.g., Cybershake validation project)
- Multi-PI proposals to outside agencies? (e.g., BPVP)
- ➤ What should the specific outcome of this workshop be?
- A report on what the current GMSV needs are?
- A suite of action items?
- Ideas for future research?
- ➤ What should future TAG projects focus on?
- What simulations should the SCEC GMSV TAG validate?
- What validation methodologies should the TAG use?
- For what applications should the TAG validate the simulations? (refer to the discussion questions for details)

Discussion Questions

Morning Session:

GMSV in relation to ground motion characterization

- 1. Should we <u>focus</u> on validation of the current versions of simulations, or on tools for validation of current and future simulations?
- 2. What are the roles of Broadband Platform (BBP) versus Cybershake <u>simulations</u> moving forward?
- 3. Are high frequency components of ground motion needed as a product of physics-based simulations (f > 1-2 Hz)?
- 4. Are vertical ground motion <u>simulations</u> needed?
- 5. What aspects of ground motion prediction equations (<u>GMPEs</u>) are simulations best suited to resolve (e.g., large M scaling, basin effects, etc.)? What <u>validation</u> can be undertaken to provide confidence in simulations for these purposes?
- 6. How can <u>uncertainties</u> in the scaling relationships (e.g., GMPEs) be identified if there is an absence of observations?
- 7. How to get <u>regionally</u> appropriate simulations or validate them?

Discussion Questions

Afternoon Session:

GMSV in relation to engineering applications

- 1. Organization:
 - a. Should the validations be done by SCEC-funded researchers, or a group of engineering users? Or some combination of both?
 - b. What form of communication to the professional community will be most impactful in <u>advancing practice</u> in this area? (e.g., a white paper on utilization of simulations in engineering applications, a NEHRP Part 3 document, *see Bradley et al. 2017 EQS paper as an example*)
- 2. What <u>frequency bandwidths</u> are most relevant to what problems? Are <u>verticals</u> needed?
- 3. What would practicing engineers like to see from <u>validations</u> to have confidence in using simulated ground motions <u>for derivations of fragility</u>? For example:
 - a. Motions scaled to a spectral shape should have a reasonable range of other parameters known to affect fragility (duration etc., see Bijelic et al. 2018 paper as an example)
 - b. Motions should have realistic period-to-period correlations.
- 4. What are the <u>research and development</u> steps needed to get us to a point to provide this guidance?
- 5. What <u>new topics</u> should we pursue? For example:
 - a. Validation parallel to what has been done for GMPEs, but for engineering demand parameters (EDPs)
 - b. Validation for long period structures, site-specific analysis, or dams
 - c. Validation for response of nonstructural components (i.e. floors spectra)

