From Seismic Hazard to Risk: Summary of Critical Issues and How SCEC Research Can Foster New Solutions

Christine Goulet, PhD

Slide contributions from
Yajie (Jerry) Lee and William (Bill) Graf
ImageCat, inc.
Warner (Varner) Marzocchi
INGV

SCEC Annual Meeting 2015
Context: Hazard vs. Risk

Hazard

- Probability that a seismic event (and/or ground motions) will affect a given area over a certain time period.
- « There is a 10% probability that peak ground motions will exceed 1 g at USC in the next 50 years. »

Risk

- The risk combines the hazard, exposure and vulnerability (fragility) of human infrastructure. Risk represents consequences (e.g. in terms of dollars, deaths and downtime).

December 2003: M 6.6

- California (San Simeon): very limited damage, 2 deaths
- Iran (Bam): 80% of city destroyed, 31 000 deaths
Alto Rio Building, Concepcion, M 8.8 Chile Earthquake Feb. 27, 2010
(Foundation failure)

Pictures: Walter Mooney; Source: William Graf
Slender 9-story RC shear wall building toppled in the 1995 Kobe Earthquake
1999 Chi Chi Earthquake (M7.6) in Taiwan

Source: William Graf
From OEF to risk (are the earthquake probabilities too low?)

It may be misleading asking if the probability of large (M5.5+) earthquake is too small; it is the related risk that can be acceptable or not.
“If a tree falls in the forest and no one is around to hear it, does it make a sound?”
A shift in paradigm for resilience

- Our contribution to a resilient society would better be served by
 - making risk-informed design decisions
 - focusing on risk-informed research priorities
Seismic Design and risk

Codes:

Set of simplified procedures for a given region and structure type. Building code performance objectives usually consist in safety and loss-of-life prevention.

Recent codes include risk-targeted design.

Performance-Based Earthquake Engineering (PBEE):

“Design for the achievement of specified results rather than adherence to prescribed means.” The design is usually structure- and site-specific.
Performance Based Earthquake Engineering (PBEE)

PEER PBEE Methodology

Hazard analysis
- IM: Intensity Measure
- EDP: Engineering Damage Parameter
- DM: Damage Measure
- DV: Decision Variable

Structural analysis
- HPC simulation

Damage analysis
- Performance Databases

Loss analysis
- Consequence Functions

- Fragility Functions

- Ground motion selection and scaling

Images: Yousef Bozorgnia
Performance Based Earthquake Engineering (PBEE)

PEER Methodology

- **Hazard analysis**
 - IM: Intensity Measure

- **Structural analysis**
 - EDP: Engineering Damage Parameter

- **Damage analysis**
 - DM: Damage Measure

- **Loss analysis**
 - DV: Decision Variable

- Design OK?
 - No: modify design
 - Yes: build!

Symbols
- D: Design
- IM: Intensity Measure
- EDP: Engineering Damage Parameter
- DM: Damage Measure
- DV: Decision Variable
Performance Based Earthquake Engineering (PBEE)

PEER Methodology

Hazard analysis

Structural analysis

Damage analysis

Loss analysis

Risk Integral:

\[P(DV > dv) = \int \int \int P(DV | DM) \cdot P(DM | EDP) \cdot P(EDP | IM) \cdot \lambda(IM) \]

3Ds:
- Dollar
- Deaths
- Downtime
- Others
Non-structural damage

"Structurally, the building is fine. But sadly, the earthquake destroyed all of our art pieces."
A shift in paradigm for resilience

- One of the largest contribution to risk variability is from hazard and ground motions. Need for
 - Improved ground-motion modeling
 - Reduce uncertainty
 - Provide physics-based models (simulations)
 - Improved pool of available seismograms
Ground-Motion Models / Ground-Motion Prediction Equations (GMMs/GMPEs)

- Empirical regression models constrained by known physical processes
- Contain multiple sub-equations to account for different effects

\[\ln(IM) = C_0 + f(\text{Magnitude}) + f(\text{Distance}) + f(\text{Source}) + f(\text{Site}) + \text{error} \]

- \(\ln(IM) \) is normally distributed with median \(\mu \) and standard deviation \(\sigma \)

![PDF Distribution](image)
Terminology

- **Aleatory variability (randomness)**
 - Inherent randomness in a process
 - Refined with more data
 - Captured by σ

- **Epistemic uncertainty (“knowable”, science-based)**
 - Many models, which is correct? Range represents the lack of knowledge...
 - Repeatable site effects, path effects, regional source effects can be considered epistemic uncertainty and *removed* from the aleatory variability
 - Penalty is that alternate models must be considered (added epistemic uncertainty)
 - Investment in data collection and targeted research can then be used to REDUCE that epistemic uncertainty
 - Captured by different μ, organized in logic trees
Ergodic assumption in GMM development

Trading space for time...
- Not enough regional data in recorded time
- Data comes from multiple regions: global models
- Potential systematic effects lumped into relatively large standard deviations
“Knowable” systematic effects

- **Source** effects (multiple events within source region)
- **Site** effects (multiple events recorded at one site)
- **Path** effects (multiple path-region sampling)
From aleatory variability to epistemic uncertainty

- Mean hazard, ergodic
- Mean hazard, non ergodic (region-, site-, path- specific)
From aleatory variability to epistemic uncertainty

- - Epistemic uncertainty (non ergodic)
Reducing epistemic uncertainty

- Seismic experiments and data collection
- Targeted analyses of data
- Definition of appropriate GMM median
- Use data to refine (physics/simulations based) models
- New (refined) models can be used in PSHA
Epistemic uncertainty and risk

- Consideration of
 - Complete UCERF3 (time independent) model
 - Epistemic uncertainty on GMMs and aleatory variability included
 - Single fragility/loss model (with variability)

UCERF3 Compound Fault System Solutions – Time-dependent models: 1440 x 4 probability models

Source: Jerry Lee
Treatment of uncertainties in risk assessment

Ideal: run all possible branches (not practical)

Optimized: be smarter in selecting a subset of branches

Robust Simulation Approach: Representation of future risk through simulation of an ensemble of views that integrates valid scientific disagreement and stochastic modeling of unknown variables.

Source: Jerry Lee
Hazard and risk, San Francisco

Source: Jerry Lee
Robust assessment of uncertainty (San Francisco)

- Average Annual Loss (AAL) distribution
- 475-year loss distribution

Mean curve

A Robust Model Uncertainty Estimate

Source: Jerry Lee
Portfolio losses and spatial correlation of ground motions (San Francisco)

Source: Jerry Lee – Figure updated 9/16/15
Tall buildings – pounding
Aggravated by spatial correlation of shaking

1999 Chi Chi Earthquake (M7.6) in Taiwan

Source: William Graf
The PEER PBEE Benchmark Study

- Proof of concept of PBEE for a given hypothetical code-conforming 4-story building in SoCal
- Propagated uncertainties using first-order-second-moment (FOSM) method
- Study at seven hazard levels

Building: RC 4 story frame building
- “Benchmark Building”: typical office building
- 4 x 6 bays
- $T_1 = 1\text{s}$

Goulet et al. 2007
Ground motions and hazard contributions

Sources of variability (2% in 50 years)

- Beam Strength
- Dead Load and Mass
- All Element Strengths
- SCWB Ratio
- Damping Ratio
- Slab Capping Rotation
- Bond Slip Hardening
- Steel Strain Hardening
- Tension Softening Slope
- Foundation Stiffness
- Slab Strength
- Joint Shear Strength

Structural EDP - Peak Story Drift Ratio of Story Three

Source: Curt Haselton
Effects of Spectral Shape (ε)

- Probability of Collapse
- $PSA(T_1=1.0s)$ (g)

Graph showing the effects of spectral shape on the probability of collapse.

- ε Consistent with hazard
- ε-neutral set

(2% in 50 yrs)
Other earthquake-related natural hazards

- Landslide/rockslide
- Fault rupture (permanent static displacement)
- Liquefaction
- Tsunami

Low probability – large consequences.
One hazard can trigger another one.
All can lead to foundation, structural or component failures (risk).
Current and future SCEC activities to consider for risk-targeted research

- Community models
- UCERF3 and faults studies
- Earthquake eng. implementation interface
- Simulation environments (earthquakes and ground motions)
 - CSEP
 - Broadband Platform
 - Dynamic verification group
 - Cybershake
 - High-F
- Other special project
 - CISM
 - SI2
 - Central California Seismic Project

Images: R. Graves and R. Archuleta
Insight into solutions from SCEC tasks?

- How can we better constrain distributions in probabilistic framework?
- How can we reduce uncertainties?

Thank you!