Testing PSHA against accelerations and intensities

Céline Beauval
Agnès Helmstetter, Hilal Tasan, Abdullah Sanddikaya
ISTerre, Grenoble
Hacettepe University, Ankara
Testing PSHA – method

• Comparison between observations and models

Consideration of all possible observations anterior/posterior to the hazard map to be tested
Testing PSHA – method

• Comparison between observations and models

Considering several sites, and the ground motion level A

Sampling in space – reduce the possible conclusions

Gerstenberger & Stirling 2010
Albarello et al. 2008
Testing against accelerations: two example applications

France

1st stations in 1995, 62 rock stations
Max time window at 1 site: 16 yrs
Total observation time: 449 yrs

Turkey

1st stations in 1973, estimated rock, 189 stations
Max time window at 1 site: 40 yrs
Total observation time: 892 yrs

Thorough work on the accelerometric databases, to provide the best accuracy and completeness of the data (not only large events are interesting)

Tasan et al. 2014
Testing against accelerations: two example applications

France
1st stations in 1995, 62 rock stations
Max time window at 1 site: 16 yrs
Total observation time: 449 yrs

Turkey
1st stations in 1973, estimated rock, 189 stations
Max time window at 1 site: 40 yrs
Total observation time: 892 yrs

Thorough work on the accelerometric databases, to provide the best accuracy
and completeness of the data (not only large events are interesting)

Tasan et al. 2014
Testing against accelerations: France

3 models tested (PGA)

Observed
Predicted (mean, 2.5%, 97.5%)

Tasan et al. 2014
Testing against accelerations: France

3 models tested (PGA) Observed
Predicted (mean, 2.5%, 97.5%)

Tasan et al. 2014
Testing against accelerations: France

3 models tested (PGA)

Observed
Predicted (mean, 2.5%, 97.5%)

AFPS2006: Model rejected

MEDD2002

SHARE2013: best adapted
Testing against accelerations: France

3 models tested (PGA)

Observed
Predicted (mean, 2.5%, 97.5%)

Part of the hazard curve which is not well constrained (M_{min} dependent, at the limit of the GMPE magnitude validity limit)
Testing against accelerations: France

3 models tested (PGA)

Observed
Predicted (mean, 2.5%, 97.5%)

Nothing can be said for accelerations of interest in earthquake engineering
Testing against accelerations: Turkey

Turkey

1st stations in 1973, estimated rock, 189 stations
Max time window at 1 site: 40yrs

Results for accelerations of interest in earthquake engineering (but T<475yrs)
Need to test another PSHA model to know if possible to discriminate

Tasan et al. 2014
Can we do better using an intensity database?
Testing PSHA against intensities in France

- ~1000 years of history, SisFrance database, intensity sequence per municipality

An intensity-acceleration equation must be selected

Faenza & Michelini (2010, FM2010): Italy

Take into account its σ

2014 Tasan H. PhD
Determining completeness periods

- Completeness in time: not possible to make simple assumptions based on the size/importance of the cities, as it changed a lot with time
- Method is relying on simple statistics on data

Ex: Strasbourg

=> Possible to work only at sites with a minimum number of data
=> Bias in the selection of the sites
Testing PSHA against intensities: results

Total $T_{OBS} = 3329$ years at 25 sites

AK2006, only acceleration levels > 0.077g

Observed (mean, 2.5%, 97.5%)
Predicted (mean, 2.5%, 97.5%)

Large uncertainty
Results for higher ground motions and longer return periods, do not contradict results based on accelerations
None of the models is rejected for $T \geq 475$ yrs

2014 Tasan H. PhD
Testing PSHA against intensities: results

Total $T_{OBS} = 3329$ years at 25 sites

AK2006, only acceleration levels $> 0.077g$

Observed (mean, 2.5%, 97.5%)
Predicted (mean, 2.5%, 97.5%)

Large uncertainty
Results for higher ground motions and longer return periods, do not contradict results based on accelerations
None of the models is rejected for $T \geq 475$ yrs

2014 Tasan H. PhD
Testing PSHA:

• Testing PSHA is more difficult than testing GMPEs/earthquake model forecasts
• The resolution power of the test seems to be rather low (difficult to discriminate between models) – only mean hazard values have been used

How to move on, improve the test on historical data:
• Apply historical methods to evaluate completeness
• To overcome the completeness issue, use an interpreted dataset: an atlas of intensity maps (isoseismal maps) for all earthquakes of SisFrance database provided by BRGM
Thank you