Active-source results for southern California; Comparison with noise-source Vs modeling

Gary Fuis
Priorities for CRM:

rock properties
rock type

also

block boundaries, or faults
In this session we will focus on seismic properties also density and magnetic susceptibility
Fuis: rock type and faults interpreted from Vp from active-source data

also

a bit about rock type interpreted from Vs from noise-source data

also

a bit about tectonics
Hauksson: interpretations of Southern CA velocity structure from earthquake-source data --using both Vp and Vs

also

interpretations of the bottom and top of the seismogenic zone
Catchings: Vp, Vs, Vp/Vs from shallow active-source data

also

element of use of Vp, Vs, and Vp/Vs from Koyna Dam area, India
Active-source results for southern California; Comparison with noise-source Vs modeling

Gary Fuis

Fuis: during discussion will illustrate a new tool using Vp/Vs vs Vp to map out rock type in the crust
Comparison of Seismic-Imaging Methods

Active-Source Methods

Advantages
- Detailed imaging of near-surface (velocities)
- Reflection imaging
- Uniform coverage (by design)

Disadvantages
- Resolution diminishes rapidly with depth
- Commonly only 2-D
- Commonly only Vp
- Expensive (to scientists)

Earthquake-source Methods

Advantages
- Coverage of whole crust and mantle
- 3-D
- Includes Vp and Vs
- Cheap (to scientists)

Disadvantages
- No resolution of near surface (no accurate velocities)
- No reflections
- Non-uniform source coverage
Comparison of Seismic-Imaging Methods (cont.)

Noise-source Methods

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage of whole crust and mantle</td>
<td>No reflections</td>
</tr>
<tr>
<td>3-D</td>
<td>Vs only</td>
</tr>
<tr>
<td>Uniform source coverage</td>
<td></td>
</tr>
<tr>
<td>Cheap (to scientists)</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Seismic-Imaging Methods (cont.)

Resolution for all methods depends on station and source spacing.

The 3 methods are complementary and all are necessary for a complete picture.
Vp
Fuis et al., BSSA, Feb. 2012

Southern CA EQ Hazard Assessment
Vs
Line 6

Barack

CVMH-11.9

edge mantle high Vs body
lower crust of Peninsular Ranges

Barack

San Bernardino

crystalline basement

edge mantle high Vs body
Imperial Valley

Barack

high Vs body

Partial melt?
Vp/Vs vs Vp
DATA POINTS

- [Weathered rocks: Tertiary seds, Franciscan rocks (<30m)]
- Miocene seds, Varian well
- [Franciscan graywacke (Geysers, CA well)]
- SAFOD damage–zone rocks, average (minor volume)
- SAFOD Great Valley sequence seds.
- SAFOD arkoses (chiefly Paleocene)
- [Serpentinite]
- SAFOD granitic rocks

Brackets enclose non–local rock types
END2