Overview of Coulomb-based Models in the Retrospective Canterbury Experiment

C. Cattania, S. Hainzl, A. Jimenez, S. Steacy
Overview of Coulomb-based Models in the Retrospective Canterbury Experiment

I. Hybrid models
combine statistical models with a Coulomb-based spatial kernel

• STEP-Coulomb (S. Steacy, A. Jimenez): based on the STEP model
• ETAS-Coulomb (S. Hainzl): based on the ETAS model

II. Physical models
both space and time dependence based on physical principles

• CRS (C. Cattania, S. Hainzl): based on Rate-and-State constitutive law

Coulomb stress + Rate-and-state frictional response
STEP-Coulomb (S. Steacy, A. Jimenez)

Based on STEP model (Gerstenberger et al, 2005; combines 3 models of increasing complexity)

\[\lambda(t, M) = \frac{10^{a' + b(M_m - M)}}{(t + c)^p} \]

(i) generic parameters derived from part M>5.0 sequences
(ii) sequences specific, using at least 100 aftershocks
(iii) space dependent, calculated for individual grid points
Overview of Coulomb-based Models in the Retrospective Canterbury Experiment

STEP-Coulomb (S. Steacy, A. Jimenez)

Coulomb map used as “filter”:
- 93% of the aftershocks in areas of $\Delta CFS > 0$
- 7% in areas where $\Delta CFS < 0$

Steacy, S., Gerstenberger, M., Williams, C., Rhoades, D., and A. Christophersen, 2013,
ETAS-Coulomb (S. Hainzl)

• Based on ETAS model, uses Coulomb stress map as spatial kernel:

\[\lambda(t, r) = \mu + \sum_{i: t_i < t} \frac{K}{(t - t_i + c)^p} e^{\alpha(M_i - M_0)} f_i(r) \]
Overview of Coulomb-based Models in the Retrospective Canterbury Experiment

ETAS-Coulomb (S. Hainzl)

• Based on ETAS model, uses Coulomb stress map as spatial kernel:

\[f_i(r) \propto \begin{cases}
\Delta CFS(r) & \Delta CFS(r) \geq 0 \\
0 & \Delta CFS(r) < 0
\end{cases} \]

Overview of Coulomb-based Models in the Retrospective Canterbury Experiment

CRS (C. Cattania, S. Hainzl)

- Based on constitutive law for seismicity evolution (Dieterich, 1994):

\[
R = \frac{r}{\gamma \dot{\tau}}
\]

\[
d\gamma = \frac{1}{A \sigma} [dt - \gamma \ dCFS]
\]

- R: instantaneous rate
- r: background rate
- γ: rate evolution parameter
- $\dot{\tau}$: secular stressing rate
- A: constitutive parameter
- σ: normal stress
Overview of Coulomb-based Models in the Retrospective Canterbury Experiment

CRS (C. Cattania, S. Hainzl)

- Based on constitutive law for seismicity evolution (Dieterich, 1994);

- Stress heterogeneity included by a Monte Carlo method. It accounts for:
 1. existence of multiple receiver faults
 2. finite size of calculation cells
 3. stress changes by smaller earthquakes

CRS (C. Cattania, S. Hainzl)

- Based on constitutive law for seismicity evolution (Dieterich, 1994);

- Stress heterogeneity included by a Monte Carlo method. It accounts for:
 (i) existence of multiple receiver faults
 (ii) finite size of calculation cells
 (iii) stress changes by smaller earthquakes

- Background seismicity uniform/non-uniform
Thank you!