Data Integration and Visualization Tools for Bringing Paleoseismic Data and Simulator (& UCERF3) Results Together

Kevin R. Milner
University of Southern California

SoSAFE Workshop, 2016 SCEC Annual Meeting
September 10, 2016
Uniform California Earthquake Rupture Forecast (UCERF3) by the Working Group on California Earthquake Probabilities (Field et al., 2014)
UCERF3 “Grand Inversion”

- Solves for event rates of fault-based ruptures
- Data constraints include:
 - Paleoseismic data
 - Slip rates
 - Regional Magnitude Frequency Distributions
 - Fault Section Magnitude Frequency Distributions

Paleoseismic data included:

- 31 Event Rate Constraints
- 23 Mean Slip Constraints

The problem: can't perfectly fit paleo & slip rate data simultaneously

- Final UCERF3 model constraint weights represent a compromise between the two datasets

Table 5. The grand inversion system of equations used in solving for the long-term rate of fault-based ruptures, where f_j represents the frequency or rate of the jth rupture.

<table>
<thead>
<tr>
<th>Equation Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$\sum D_{ij} f_j = v_i$ Slip Rate Balancing: v_i is the subsection slip rate (from a deformation model) and D_{ij} is the slip on the ith subsection in the jth event, averaged over multiple occurrences of the rupture and as measured at mid-seismic depth.</td>
</tr>
<tr>
<td>(2)</td>
<td>$\sum G_{ij} p^\text{av} f_j = f_i^\text{av}$ Paleoseismic Event Rate Matching: f_i^av is a paleoseismically inferred event rate estimate, G_{ij} specifies whether the ith rupture utilizes the jth subsection (0 or 1), and p^av is the probability that the ith rupture would be seen in a paleoseismic trench.</td>
</tr>
<tr>
<td>(3)</td>
<td>$R^2 = R^2_0 + \frac{R^2_m}{2}$ Fault Section Smoothness Constraint: This enables forcing the nucleation rate, R_0, in the mth magnitude bin to vary smoothly along a fault section, where the s-1 and s+1 subsections are adjacent to the sth subsection.</td>
</tr>
<tr>
<td>(4)</td>
<td>$\lambda f_i = 0$ Improbability Constraint: This allows us to force relatively improbable events to have a lower rate (for example, based on multi-fault rupture likelihoods). A higher value of adds more misfit for a given rupture rate, forcing the inversion to minimize that rupture rate further.</td>
</tr>
<tr>
<td>(5)</td>
<td>$f_i = f_i^{\text{av prior}}$ A Priori Constraint: This constrains the rates of particular ruptures to target values, either on an individual basis (for example, male Parkfield occur every ~25 years) or for a complete rupture set (for example, as close as possible to those in UCERF2).</td>
</tr>
<tr>
<td>(6)</td>
<td>$\sum \alpha_i = f_i R^2_m$ Regional MFD Constraint: This enables forcing a geographic region, g, to have a specified magnitude-frequency distribution (MFD), such as Gutenberg-Richter: R^2_m represents the nucleation rate for the mth magnitude bin in the gth region. Matrix α_i contains the product of whether the ith rupture falls in the mth magnitude bin (0 or 1) multiplied by the fraction of that rupture that nucleates in the gth region.</td>
</tr>
<tr>
<td>(7)</td>
<td>$\sum \epsilon_i = f_i R^2_m$ Fault Section MFD Constraint: This enables forcing subsections to have specific nucleation MFDs. R^2_m is the nucleation rate for the mth magnitude bin on the sth subsection. Matrix ϵ_i contains the product of whether the ith rupture falls in the mth magnitude bin (0 or 1) multiplied by the fraction of that rupture that nucleates in the sth subsection.</td>
</tr>
</tbody>
</table>
Paleoseismic Data and Slip Rates Battle It Out in UCERF3

High Paleoseismic Constraint Weight

[Graph showing slip rates for San Andreas with a poor fit]

[Graph showing paleo rates/constraints for San Andreas with a good fit]

High Slip Rate Constraint Weight

[Graph showing slip rates for San Andreas with a good fit]

[Graph showing paleo rates/constraints for San Andreas with a poor fit]
UCERF3 Final Model Fits

Slip Rate
Data
Model

Event Rate
----- Model
O Data
Mean Slip
----- Model
O Data

Slip Rates for San Andreas

Paleo Rates/Constraints for San Andreas
RSQSim to the Rescue?

- RSQSim fits slip rates exactly (backslip model)
- Paleoseismic fits are similar to UCERF3 on the SAF
- Magnitude Frequency Distributions don't match expected (yet)
Rebuilt from the ground up in 2016
- Replaces outdated Java3D library
- Runs on Windows, Mac OS X, Linux

Download: scedvdo.usc.edu

2016 SCEC UseIT Internship
Focused on RSQSim
- New exploration and movie making tools available
- Stop by during poster sessions for a demo
SCEC-VDO: RSQSIm Slip Rates
SCEC-VDO: RSQSim Participation Rates
Southern California Earthquake Center

SCEC-VDO: RSQSim MFDs

Results can be viewed at 3 scales

- Fault Section: UCERF3 fault section, e.g. SAF Mojave S
- Fault Subsection: Smallest UCERF3 unit where length \(\approx \frac{1}{2} \) DDW
- Patch: a single triangle with \(\approx 1 \text{km}^2 \) area
SCEC-VDO: RSQSim MFDs

Double Click
SCEC-VDO: RSQSim MFDs

Subsection

Parent

Parent 231 MFD

Sect 1851: SanAndreas(MojaveS), Subsection13 MFD

Patch

Elem 183341 MFD

Southern California Earthquake Center
SCEC-VDO: RSQSim Recurrence Intervals

At Wrightwood with UCERF3 Mean=106 yr, near Pallett Creek with UCERF3 Mean=149 yr

Patch

M≥6
Mean: 108

M≥7
Mean: 127

Subsection

M≥6
Mean: 96

M≥7
Mean: 127

Parent

M≥6
Mean: 68

M≥7
Mean: 113
SCEC-VDO: Render Movies

- Allows for visual inspection of patterns
- Previous events fade out over time
 - 50 year fade works well
- Can visualize thousands of years or specific sequences
Thank you!