Forecasting focal mechanisms and evaluating forecast skill

http://moho.ess.ucla.edu/~kagan/M5P.ppt

Available at http://eq.ess.ucla.edu/~kagan/kagan.html
World seismicity: 1976 – 2012 (GCMT)
STATISTICAL FOCAL MECHANISM FORECAST

1. Focal mechanisms are necessary to calculate seismograms due to forecasted events.

2. Forecast must be GLOBAL, i.e. available everywhere where earthquakes occur (Kagan & Jackson, JGR, 1994).

3. Forecast uncertainty should be estimated (K&J_1994).

4. Forecast skill should be evaluated by prospective testing (K&J_2014, K&J_2015).
Focal mechanism forecast is calculated by summing seismic moment tensors in 1000 km distance area and evaluating eigenvectors of the sum tensor. We compare this source forecast with other mechanisms to measure degree of uncertainty (Φ_1).
CONCLUSIONS

1. We apply a likelihood method to measure the skill of an earthquake focal mechanism forecast. The advantage of such an approach is that the likelihood scores for the earthquake rate prediction can quantitatively be combined with the focal mechanism forecast, resulting in a general forecast optimization.

2. We compare actual forecasts or occurrences of event source properties with the null hypothesis that the mechanism's 3-D orientation is random.

3. We calculate the information (likelihood) score for two rotational distributions (Cauchy and von Mises-Fisher) which are used to approximate a source orientation pattern.

4. We calculate the likelihood score for earthquake source forecasts based on the GCMT catalog and their validation by future seismicity data. We explored the dependence of the results on data resolution, internal dependence of scores on forecasted angle, and a random variability of likelihood scores.
Abstract
In our paper published earlier we discussed forecasts of earthquake focal mechanism and ways to test the forecast efficiency. Several verification methods were proposed, but they were based on ad-hoc, empirical assumptions, thus their performance is questionable. In this work we apply a conventional likelihood method to measure a skill of forecast. The advantage of such an approach is that earthquake rate prediction can in principle be adequately combined with focal mechanism forecast, if both are based on the likelihood scores, resulting in a general forecast optimization. To calculate the likelihood score we need to compare actual forecasts or occurrences of predicted events with the null hypothesis that the mechanism's 3-D orientation is random. For double-couple source orientation the random probability distribution function is not uniform, which complicates the calculation of the likelihood value. To better understand the resulting complexities we calculate the information (likelihood) score for two rotational distributions (Cauchy and von Mises-Fisher), which are used to approximate earthquake source orientation pattern. We then calculate the likelihood score for earthquake source forecasts and for their validation by future seismicity data.
Abstract (cont.)

Several issues need to be explored when analyzing observational results: their dependence on forecast and data resolution, internal dependence of scores on forecasted angle, and random variability of likelihood scores. In this work we propose a preliminary solution to these complex problems, as these issues need to be explored by a more extensive theoretical and statistical analysis.
Forecast:
Long-term earthquake rate based on GCMT catalog 1977-present. 0.1 x 0.1 degree, Magnitude $M \geq 5.8$

Combined long- and short-term forecast for north- and south-western Pacific area