U-Th Dating of Pedogenic Carbonate: Applications to Southern California

Warren Sharp, Kate Fletcher, Kim Blisniuk &

Whitney Behr, Tom Hanks, Ken Hudnut, Katherine Kendrick, Mike Oskin, Tom Rockwell, and Dylan Rood

²³⁰Th/U Dating of Pedogenic Carbonate

Strengths

- Provides precise, accurate minimum ages for deposition of host alluvium.
- Is resistant to the effects of fan "smoothening" and erosion.
- Provides "inheritance-free" dates. (cf. CRN inheritance, OSL partial bleaching, ¹⁴C in-built age)

²³⁰Th/U Dating of Pedogenic Carbonate

Limitations

- Restricted to gravelly alluvium with calcic soils that develop in arid to sub-humid climates.
- Requires formation and preservation of carbonate penecontemporaneous with fan deposition for best results.
- Subject to averaging effects when samples are large relative to carbonate accumulation rates.

Outline of Talk

- Basis of the U-series technique
- Pedogenic carbonate: a primer
- Case studies in southern California
 Biskra Palms fan, Mission Creek Fault
 Alverson Canyon fan, Elsinore Fault
- Recent analytical developments

Geochemistry of Uranium and Thorium in the Near-Surface Environment

- Uranium in oxygenated waters complexes to form the uranyl ion, (UO₂)²⁺ with appreciable solubility at low temperature.
- Thorium occurs only in the +4 oxidation state in natural waters and does not generally complex; hence thorium is extremely insoluble at low temperature.

The ²³⁸U Decay Series

238U
$$\xrightarrow{4.5 \text{ Gyr}}$$
 234Th $\xrightarrow{24 \text{ d}}$ 234Pa $\xrightarrow{7 \text{ hr}}$ 234U $\xrightarrow{244 \text{ kyr}}$ 3 min 218Po $\xrightarrow{4 \text{ d}}$ 222Rn $\xrightarrow{1.6 \text{ kyr}}$ 226Ra $\xrightarrow{75 \text{ kyr}}$ 230Th $\xrightarrow{2}$ 214Pb $\xrightarrow{27 \text{ min}}$ 214Bi $\xrightarrow{20 \text{ min}}$ 214Po $\xrightarrow{0.2 \text{ msec}}$ 210Pb $\xrightarrow{23 \text{ yr}}$ 3 stable 210Po $\xrightarrow{5.1 \text{ d}}$ 210Bi

Geochemistry of Uranium-234

- Alpha recoil of both ²³⁴U and its immediate parent, ²³⁴Th, tends to enrich the concentration of ²³⁴U over its secular equilibrium abundance in near-surface waters. As a result, their (²³⁴U/²³⁸U) ratios generally range from 1.3 to as high as 10.
- Carbonates acquire these enriched (²³⁴U/²³⁸U) ratios upon formation.

The ²³⁰Th/²³⁸U and ²³⁴U/²³⁸U Equations

$$\left(\frac{^{230}\text{Th}}{^{238}\text{U}}\right) = 1 - e^{-\lambda_{230}t} - \left[\left(\frac{^{234}\text{U}}{^{238}\text{U}}\right) - 1\right] \left(\frac{\lambda_{230}}{\lambda_{234} - \lambda_{230}}\right) \left[1 - e^{(\lambda_{234} - \lambda_{230})t}\right]$$

Must be solved numerically

$$\left(\frac{{}^{234}\mathrm{U}}{{}^{238}\mathrm{U}}\right)_{t} = 1 + \left[\left(\frac{{}^{234}\mathrm{U}}{{}^{238}\mathrm{U}}\right)_{0} - 1\right]e^{-\lambda_{234}t}$$

Can be solved directly

Correcting for initial ²³⁰Th and U from detritus

- Thorium observed in carbonate samples comes from included detritus.
- Use ²³²Th as index to correct for accompanying initial ²³⁰Th and U.
- For samples with (²³⁰Th/²³²Th)_{activity} ≥10, a widely used model correction is suitable.

Therefore:

Most pedogenic carbonate will contain ppm levels of ²³⁸U, with excess ²³⁴U, but (when pure) only ppb levels of ²³²Th.

So if samples are:

- Reasonably free of incorporated detritus (and initial ²³⁰Th from other sources);
- · Have behaved as closed systems;
- Are a few hundred to a few hundred thousand years old;

Then:

Samples of 1-10 mg will yield ²³⁰Th/U dates with accuracy at the percent level.

Pedogenic Carbonate: a primer

Forms

- In arid to sub-humid climates where annual evaporation > precipitation.
- At depths of 0.3 to >2.0 m, positively correlated with mean annual precipitation.

Composed of

 Ca⁺² from eolian dust or parent material, and CO₂ (as HCO₃⁻ in soil water) derived from the atmosphere and plant-root respiration.

Precipitation from solution

 Caused by increased ion strength due to evaporation, transpiration, or freezing.

Morphology of Carbonate Accumulation in Gravelly Soils

Pedogenic Carbonate: 20 ka terrace: Wind River Basin, Rocky Mts.

Pedogenic carbonate coatings, Elsinore Fault

Measurement & Sampling

Mass spectrometry via ICP-MS

- Ages precise to ~1.0% (conventional samples) &
 3-5% (laser ablation) at one standard deviation.
- Accuracy closely approaches precision.

Sampling modes

- 1-10 mg samples drilled or scraped from clastcoating; "no-chem." option for pre-Holocene samples.
- Laser ablation with 0.1 mm beam; can probe age structure of coatings in profile view

The Biskra Palms surface is considered "well preserved"

¹⁰Be ages for pavement cobbles from T2 surface

Biskra Palms Pedogenic Carbonate:

- Stage I
- dense yellow carbonate is 200-300 microns thick
- highly suitable for U-series dating:
 - U_{median}= 4.5 ppm
 - $Th_{median} = 0.12 ppm$
 - Median (²³⁰Th/²³²Th)_{AR} = 40

U-series ages for pedogenic carbonate from T2 surface

Using samples of 20-50 mg needed for TIMS analyses...

we analyzed all, or most, of the micro-stratigraphic sequence present in a carbonate coating, yielding average ages for the sampled intervals.

¹⁰Be ages for tonalite and granite boulders from T2 surface

Biskra Palms age summary

Field Location: Coyote Mountains

Elsinore Fault at Alverson Canyon

Fletcher et al. (2011)

Q6central fan at P1, Elsinore Fault

U-series dates for Q6central fan

¹⁰Be depth profile at Q6, Elsinore Fault

Blisniuk et al. (2012)

¹⁰Be depth profile at Q6, Elsinore Fault

Blisniuk et al. (2012)

Laser ablation U-series dating

Laser ablation U-series dating

