Near Realtime Teleseismic and Geodetic Finite Fault Modeling at the NEIC

Bill Barnhart
Gavin Hayes

Collaborators: Chen Ji, Guangfu Shao (UCSB); Carlos Mendoza (UNAM); Dave Wald, Harley Benz, Steve Hartzell (USGS)
NEIC Realtime Response

- Location
- Magnitude
- Mechanism
 - PAGER
 - ShakeMap
 - Press Releases

Fast Finite Fault Model
- Revised Products

Revised FFM
- Geodetic Observations
- Revised Products
- Uncertainty Analysis
- Research Products

- No Fault (Median Distance)
- Initial Fault
- Refined Fault & SGM/MMI Data

- < 60 minutes
- 60-95 minutes
- 2-3 hours
- Days-Months
NEIC Realtime Response

Location
Magnitude
Mechanism
 PAGER
 ShakeMap
 Press Releases

Fast Finite Fault Model
Revised Products

Revised FFM
Geodetic Observations
Revised Products
Uncertainty Analysis
Research Products

No Fault (Median Distance)

< 60 minutes

60-95 minutes

2-3 hours
Days-Months
FFM Trigger (W-phase)

- After completion of W-phase, surface waves at ~90 degrees
- Uses best-fitting CMT nodal planes
- Omits waveforms flagged by W-phase noise criteria

Body Waves, Turkey EQ 10/23/2011
FFM Trigger (W-phase)

- After completion of W-phase, surface waves at ~90 degrees
- Uses best-fitting CMT nodal planes
- Omits waveforms flagged by W-phase noise criteria

Body Waves, Turkey EQ 10/23/2011
At each sub-fault, solve for:

- Slip Magnitude
 - moment constrained
- Slip Direction (rake)
 - CMT or input assumption constrained
- Rupture Initiation (e.g. Rupture velocity)
 - input assumption constrained
- Rupture Duration
 - moment constrained
FFM Inversion 1: Solution (Maule)
FFM Inversion 2: Revised Solution (Maule)

Explore:

- Waveform fits, onsets
- Assumed fault geometry
- Rupture velocity
- Slip & rake constraints
- Data sensitivities
Teleseismic RT FFM Uncertainty

1) Timing - misfit between data & synthetics
 Use analyst picks
 Shift with X-correlation/calibration event

2) Fault Geometry
 Fix to known structure (e.g. Slab 1.0, Geodetic location)

3) EQ Mislocation
 Rapid relocations necessary *

4) Incorrect Assumptions (e.g., Vr, time, rupture direction)
 Difficult to handle rapidly

5) Green’s Functions, Velocity Model, etc
 Difficult to handle rapidly
Event Mislocation

~50 km shift to southwest
• Model 1: Quick FFM. CMT Dip = 15°, initial PDE Depth = 39km.
• Model 2: Adjusted FFM (days after event), made to fit trench geometry (Chen Ji).
• Model 3: Slab1.0 Dip = 18°, Depth = 30km.
Geodetic Source Inversions

Data Sources:
- GPS (continuous, high rate)
- InSAR
- Optical Imagery
- LiDAR

Invert For:
- Location/Depth
- Orientation
- Fault Dimensions
- Slip Distribution

Image: Rowena Lohman
Geodetic Source Inversions

Advantages:
- Centroid location and rupture dimensions
- Slip and faulting complexity
- Expands magnitude range of EQs
- Inversions are fast
- Uniform GFs (w/ analytical answer)

Disadvantages:
- Time latency
- Spatial coverage
- Contamination with aseismic
- Simplified GFs
Recent Examples

July 2013 NZ (OT +3days)

August 2013 NZ (OT +1day)

Inversions: 20s-5min

2013 Khash, Iran (Mw7.7)

Displ. (cm)

2cm

2cm

5cm

Depth (km)

Along-Strike Length (km)
Reducing Location Uncertainty

Initial FFM (Z-displacements)

Revised FFM: Fixed to InSAR Derived Plane

Barnhart et al. revised
GFs: Bob Herrmann
Model Resolution-Based Discretization

Parkfield Earthquake

Time: ~1 min-30 mins

Barnhart & Lohman 2010
Assessing Uncertainty (Geodesy)

Best-Fit Model

Synthetic Datasets + Noise

- Fault Geometry
- Fault Geometry
- Fault Geometry

Ensemble Behavior

Devlin et al. 2011

Time: 30min - 6hours
Bootstrapping (averaging 100+ models)

Gives an indication of model sensitivity with respect to data used in the inversion.

=> Consistency of slip given assumptions of inversion.

2013 Craig, AK Earthquake
2D Geodetic Green’s Functions

Static offset from synthetic seismic GFs

GFs: Bob Herrmann
Take Aways

NEIC's goal to produce rapid, accurate source dimensions
 - Necessary for ShakeMap, PAGER, etc.
 - Models are revised for derivative products and research applications
 - Hampered by location, time, 3D structure, model assumptions

Geodetic Observations
 - Currently using continuous GPS (2-5 day latency) and InSAR (weeks)
 - Moving towards in-house real-time processing (seconds-minutes latency)
 - Inversions w/ seismic-derived Green's functions

Future Work
 - OpenMP - speed up Ji approach from ~40 mins to ~5-10mins
 - Better, closer data
 - Add SH to Mendoza P-wave inversion technique
 - Test multiple GF databases (multiple constructed at the NEIC)
 - Joint seismic-geodetic inversions
P-wave only analysis (lower plot) to obtain first-order slip characteristics soon after an earthquake occurs (within ~10 mins of CMT solution).

Speeds up inversion by constraining the model space:
- Fixed rake
- Fixed rupture velocity
- Fixed moment
Maule FFM

Single-plane teleseismic FFM.

Fits seismic data extremely well (explains 88% of waveform data).

Aftershocks dominantly cluster in regions of lower or transitional slip.

Reasonable fits to horizontal & vertical GPS data.
Maule FFM

Three-plane teleseismic FFM.

Fits seismic data extremely well (explains 89% of waveform data).

Better accounts for downdip changes in slab geometry.

Much better fits to horizontal GPS data.
Maule FFM

Five-plane telesismic FFM.

Fits seismic data extremely well (explains 90% of waveform data).

Better accounts for down-dip and along-strike changes in slab geometry.

Much better fits to horizontal & vertical GPS data.
Maule GPS