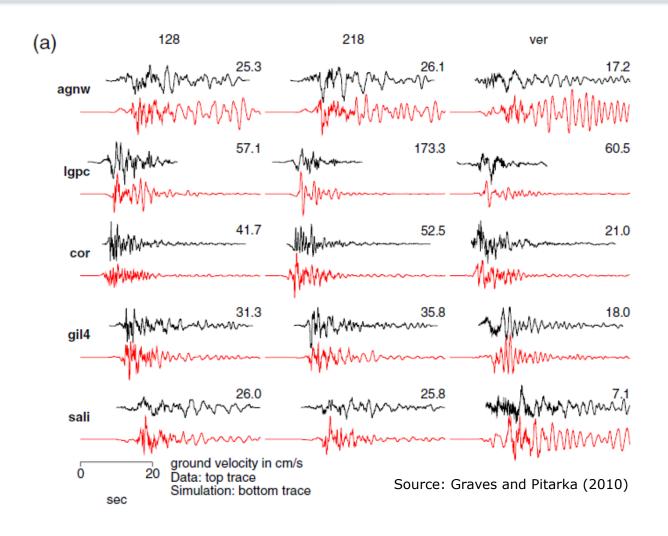
Ground Motion Simulations Validation – process and summary of status

Christine Goulet

Pacific Earthquake Engineering Research center
UC Berkeley
qoulet@berkeley.edu

Many thanx to: N. Abrahamson, P. Somerville, F. Silva, P. Maechling, R. Archuleta, J. Anderson, K. Assatourians, G. Atkinson, J. Bayless, J. Crempien, C. Di Alessandro, R. Graves, T. Hyun, R. Kamai, K. Olsen, W. Silva, R. Takedatsu, F. Wang, K. Wooddell,, D. Dreger, G. Beroza, S. Day, T. Jordan, P. Spudich, J. Stewart and their collaborators...

Large collaborative validation of simulations using the SCEC BroadBand Platform


Driven by need of seismic hazard projects to supplement recorded datasets

- South-Western U.S. utilities (SWUS)
- PEER NGA-East project (new CENA hazard model)
- PEER NGA-West projects
- Southern California Earthquake Center (SCEC)
 BroadBand Platform
 - Set of computational tools for ground motion simulations, including post-processing

Collaboration of SWUS-SCEC-PEER critical to success!!!

Past validations...

Objectives

- Quantitative validation for forward simulations in engineering problems
 - Short term goal: supplement recorded data for development of GMPEs
 - Long term goal: develop acceptance of simulations for engineering design
- Key focus: 5% damped elastic "average" PSA (f=0.1-100 Hz/ T=0.01-10 s)
 - Correlates well with structural response basis of design
 - Allows large number of validation evaluations

- Need more transparency...
- Need to validate against many events
- Need clear documentation of fixed and optimized parameters from modelers for each region
- Need source description that is consistent between methods
- Use unique crustal structure (V, Q) for all models
- Consider multiple source realizations
- Run simulations for reference site conditions correct data with empirical site factors
- Make all validation metrics computation and plots in uniform units/format – implement postprocessing pipeline on BBP
- Need to tie-in to specific code/BBP version

Validation schemes

B. Validation against GMPE for generic scenarios

Validation allows for development of region-specific rules (source scaling, path)

Selection of events and stations

		# RECORDS <200km			
EO NANAE	DECION	(*<1000km)	Mag. (Mw)	Tura	# SELECTED
EQ NAME	REGION	124	'	Type	RECORDS
El Mayor Cucapah	WUS	134	7.20	SS	40
Northridge	WUS	124	6.69	REV	40
Hector Mine	WUS	103	7.13	SS	40
Landers	WUS	69	7.28	SS	40
Whittier Narrows	WUS	95	5.99	REV OBL	40
Big Bear	WUS	42	6.46	SS	28
Parkfield	WUS	78	6.00	SS	40
Loma Prieta	WUS	59	6.93	REV OBL	40
North Palm Springs	WUS	32	6.06	REV OBL	32
Coalinga	WUS	27	6.36	REV	27
San Simeon	WUS	21	6.50	REV	21
Saguenay	CENA	14*	5.90	REV OBL	14
Riviere-du-Loup	CENA	98*	4.64	REV	40
Mineral, VA	CENA	94*	5.70	REV	40
Tottori	JAPAN	171	6.61	SS	40
Chuetsu-Oki	JAPAN	286	6.80	REV	40
Niigata	JAPAN	246	6.63	REV	40
Iwate	JAPAN	186	6.90	REV	40
Kocaeli	TURKEY	14	7.51	SS	14
Chi-Chi	TAIWAN	257	7.62	REV OBL	40
L' Aquila	ITALY	40	6.30	NML	40
Christchurch	NEW ZEALAND	26	6.20	REV OBL	26
Darfield	NEW ZEALAND	24	7.00	SS	24

- Large dataset (>20 EQs)
- Many regions & tectonic environments
- Span wide magnitude range (Mw 4.64 to 7.62)
- Variety of mechanisms
- Well-recorded (17 EQs with> 40 records)
- Select a large subset of stations (~40) that are consistent with mean and standard deviation PSa of the full dataset.

Simulation Methodologies

Broadband using Green's functions

- U. Nevada Reno Composite Source Model (CSM)
- U. California Santa Barbara (UCSB)

Stochastic methods (e.g. Brune spectrum)

- SMSIM (point source) not formally evaluated
- EXSIM

Hybrid - Green's functions LF, Stochastic HF

- Graves and Pitarka (G&P) sub-fault source spectra
- San Diego State University (SDSU) scattering functions (kappa, Q, intrinsic attenuation)

Deterministic source – simplified stochastic wave propagation

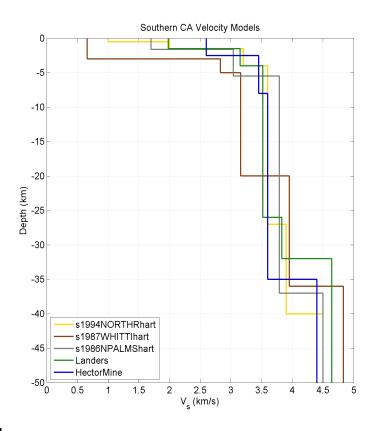
Irikura recipe – not ready for evaluation

Methods and Input

Input – Source geometry (event-specific)

src file on SCEC BBP

- MAGNITUDE
- FAULT_LENGTH
- DLEN
- FAULT_WIDTH
- DWID
- DEPTH_TO_TOP
- STRIKE
- RAKE
- DIP


- LAT_TOP_CENTER
- LON_TOP_CENTER
- HYPO_ALONG_STK
- HYPO_DOWN_DIP
- DT
- SEED
- CORNER_FREQ
- SEISMIC MOMENT
- HYPO LAT
- HYPO LONG
- HYPO DEPTH

Input – Path (region-specific)

- For Greens' functions
 - LF: 1D velocity structures:
 V_s, V_p, rho, Q_s, Q_p
 - UCSB & UNR: Modified "equivalent" profile to account for Q(f)
 - All use a standard shallow velocity profile with V_{s30} = 863 m/s
- Stochastic methods
 - Use region-specific empirical models for Q(f), geometrical spreading and duration

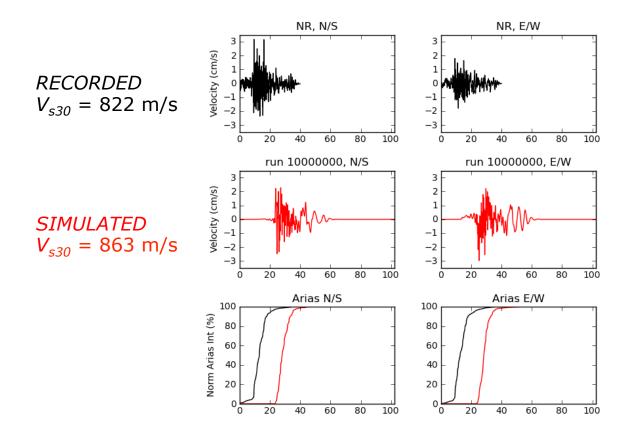
Process and nomenclature

For each scenario, specification of:

Source (from src)

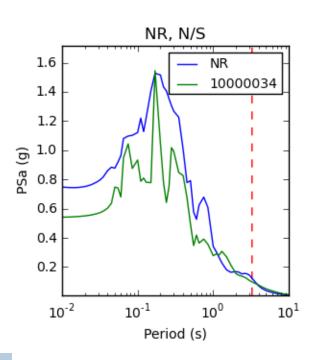
- Kinematic models: rules for slip, rise time, rake, etc.
- Stochastic model: sub-faults as point sources with timedependent f_c

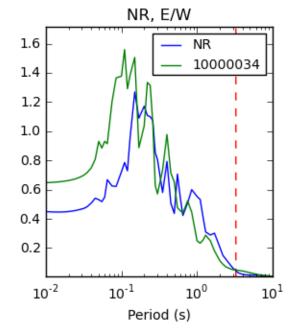
Path (consistent with 1D velocity model)

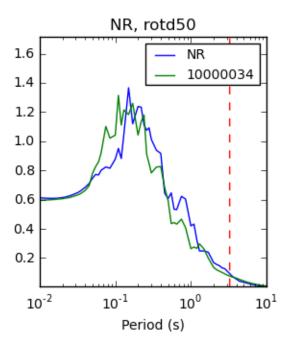

- Kinematic models: Green's functions computed with velocity models
- Stochastic models: Empirical geometrical spreading, Q(f) duration

For each scenario, seismograms generated for:

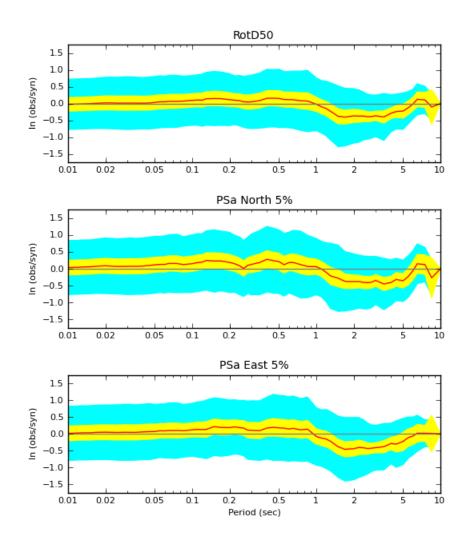
50 source realizations X ~ 40 stations X 2 horizontal dir.


 Qualitative evaluation of velocity time series and Husid plot based on Arias intensity

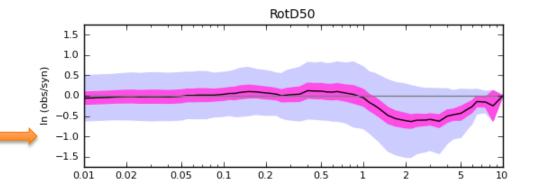




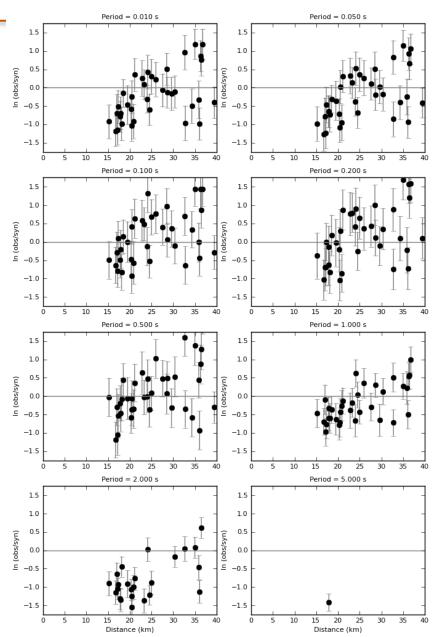
PSa for station 2001-SCE, NR vs 10000034



- Goodness-of-fit measures for PSA and PGA
 - Average GOF with T for all stations within an event

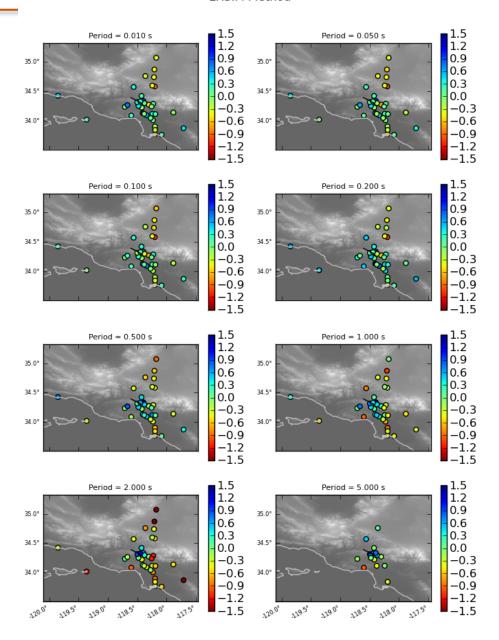

GOF Comparison between LOMAP and simulation 10000021 R < 85 km

- Goodness-of-fit measures for PSa and PGA
 - Average GOF with T for all stations within an event
 - Average GOF for all realizations (all stations)



Evaluation products

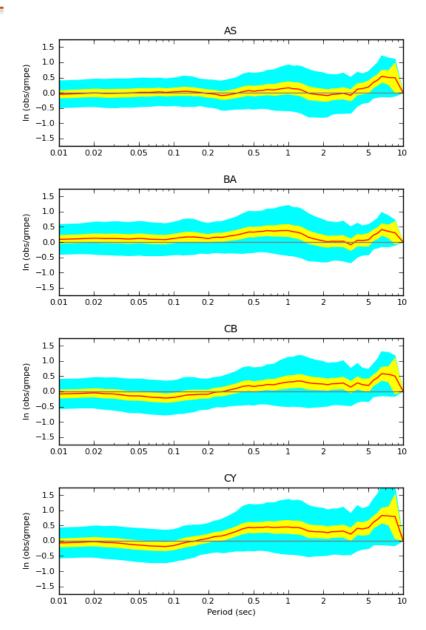
- Goodness-of-fit measures for PSa and PGA
 - Average GOF with T for all stations within an event
 - Average GOF for all realizations (all stations)
 - Average GOF with distance (all realizations)


GOF Comparison for WHITTIER 50 Realizations CSM Method

Evaluation products

GOF Comparison for NR 50 Realizations EXSIM Method

- Goodness-of-fit measures for PSa and PGA
 - Average GOF with T for all stations within an event
 - Average GOF for all realizations (all stations)
 - Average GOF with distance (all realizations)
 - Map of GOF (all relizations)



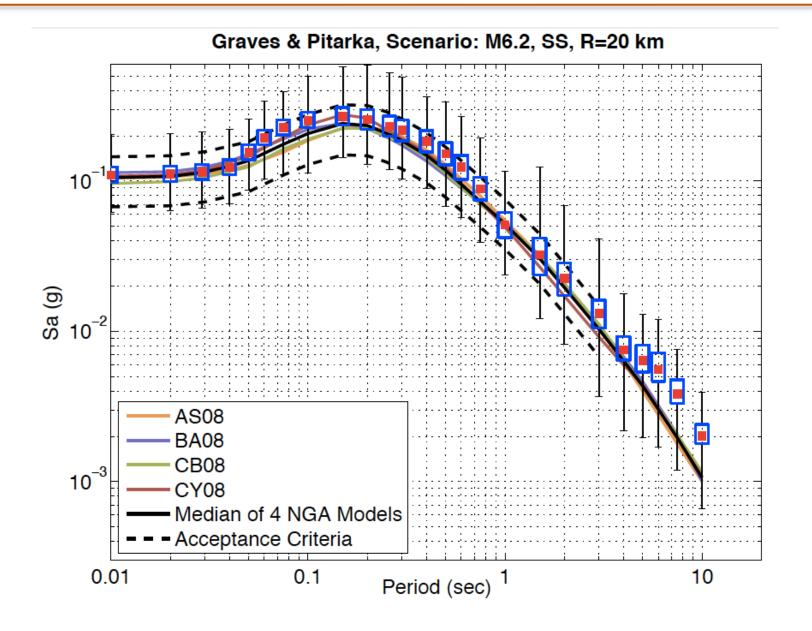
Comparison between GMPEs and LOMAP Number of stations: 40

Evaluation products

- GOF plots also developed for
 - NGA-West1 (2008) GMPEs
 - SMSIM

Allows to see trends/event terms

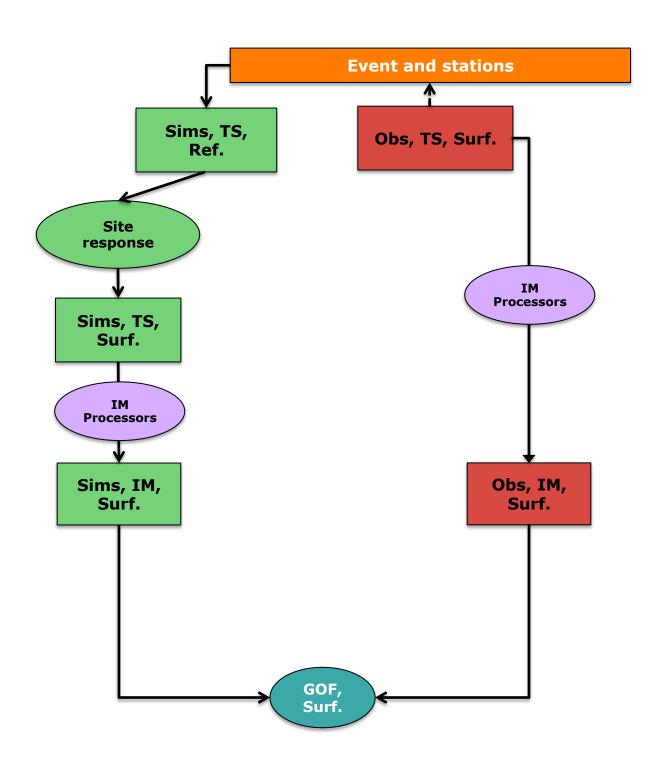
Scenario selection



- Selected 3 scenarios for which NGA-West1&2 GMPEs are well constrained by data:
 - M6.2 SS, 20 and 50 km
 - M6.6 SS, 20 and 50 km
 - M6.6 REV, 20 and 50 km
- 50 realizations of the source, WITH randomized hypocenter location for each
- Simulations for two velocity models: NorCal and SoCal

Evaluation criteria

From validation to forward simulations

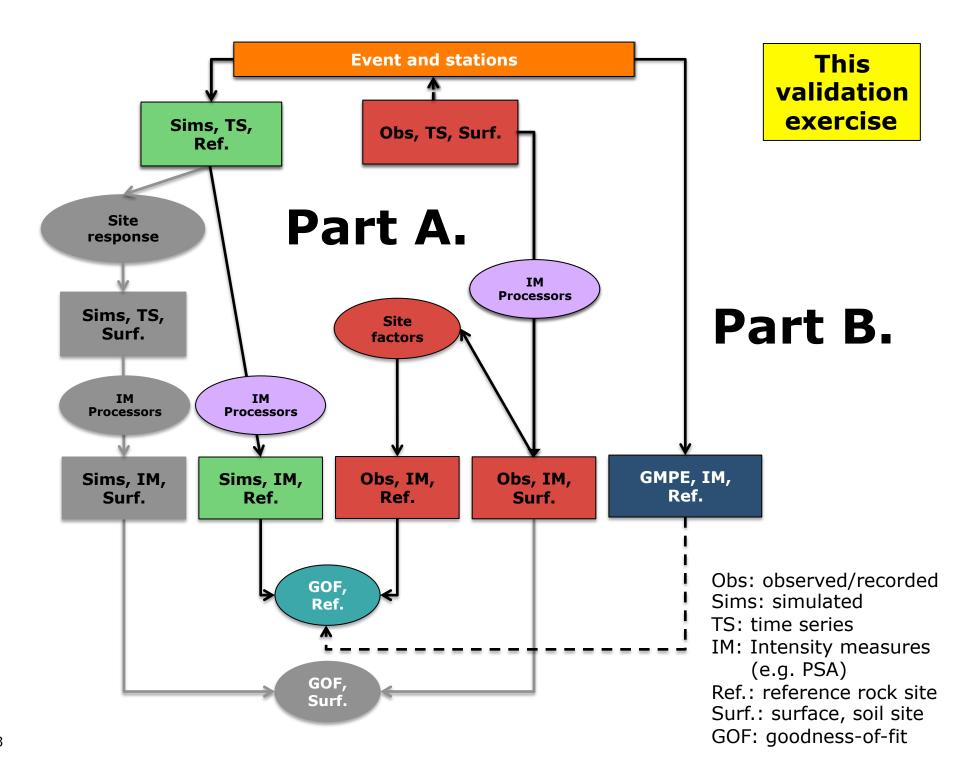

PATH 1

- Find the best fitting source (srf) realization
- Use its goodness of fit to represent modeling uncertainty
- Include uncertainty in srf specification when forward modeling future scenarios

PATH 2

- Use the average goodness of fit of 50 srf's to represent modeling uncertainty
- No need to include uncertainty in srf specification when forward modeling future scenarios

Previous validation exercises


Obs: observed/recorded

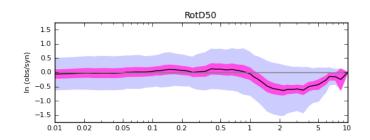
Sims: simulated TS: time series

IM: Intensity measures

(e.g. PSA)

Ref.: reference rock site Surf.: surface, soil site GOF: goodness-of-fit

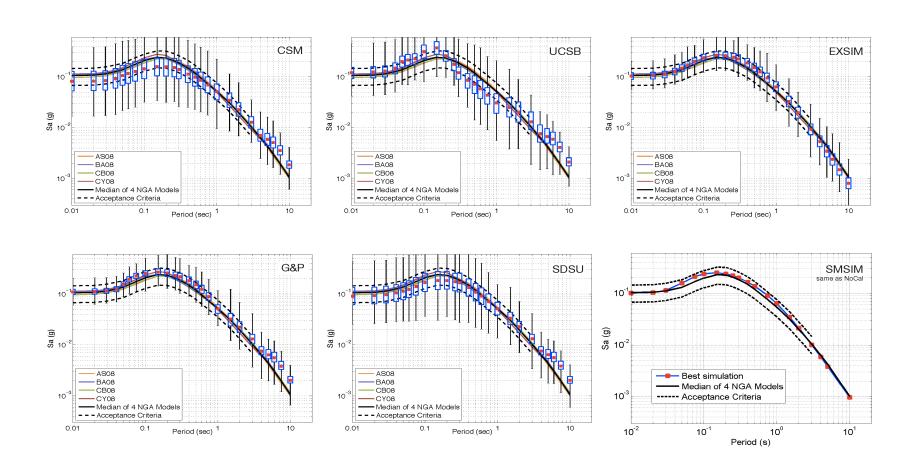
- Introduction
- Validation framework and schemes
- Overview of simulation methods
- Sample results and evaluation tools
- Path forward to forward simulations
- Next steps


Evaluation products

Summary table for GOF

- T bins
- R bins
- Events/M bins
- Mechanism

Combined GOF Plot for LOMAP 50 Realizations SDSU Method



	ducts	PSA period range							
	Event (Mw, Mech.)	[0.01-	0.1] s]0.1-	-1] s]1-3] s		> 3s	
	Whittier Narrows (5.89, ROBL)	-0.67	0.74	-0.36	0.60	-0.86	0.87	-1.25	1.25
Rrup=[0-20] km	North Palm Springs (6.12, ROBL)	-0.32	0.77	-0.22	0.67	-0.24	0.58	-0.09	0.35
	Tottori (6.59, SS)	-0.55	0.69	-0.06	0.61	-0.24	0.59	-0.11	0.48
	Niigata (6.65, REV)	-0.15	0.73	0.08	0.66	-0.55	0.74	-0.62	0.79
	Northridge (6.73, REV)	-0.24	0.58	0.15	0.57	-0.13	0.51	-0.06	0.44
	Loma Prieta (6.94, ROBL)	-0.25	0.53	-0.09	0.55	-0.37	0.66	-0.28	0.44
ē	Landers (7.22, SS)	-0.45	0.84	-0.14	0.66	-0.19	0.51	-0.03	0.78
	Average CA	-0.36	0.65	-0.10	0.60	-0.34	0.62	-0.18	0.52
	Average ALL	-0.37	0.66	-0.08	0.60	-0.34	0.63	-0.23	0.55
Rnup=] 20-70] km	Whittier Narrows (5.89, ROBL)	0.06	0.63	0.24	0.70	-0.45	0.71	-0.73	0.73
	North Palm Springs (6.12, ROBL)	0.77	0.98	0.54	0.82	0.02	0.48	-0.48	0.49
	Tottori (6.59, SS)	0.37	0.66	-0.14	0.82	-0.92	1.02	-0.66	0.75
	Niigata (6.65, REV)	0.59	0.86	0.31	0.97	-0.80	1.04	-1.11	1.18
	Northridge (6.73, REV)	0.11	0.48	0.35	0.60	-0.38	0.58	-0.57	0.67
	Loma Prieta (6.94, ROBL)	-0.39	0.54	-0.26	0.56	-0.41	0.63	-0.07	0.40
	Landers (7.22, SS)	-0.21	0.38	-0.17	0.41	-0.63	0.74	-0.67	0.81
	Average CA	0.08	0.61	0.15	0.63	-0.42	0.65	-0.47	0.65
	Average ALL	0.18	0.65	0.14	0.69	-0.55	0.76	-0.70	0.83
	Whittier Narrows (5.89, ROBL)	!		!				!	
	North Palm Springs (6.12, ROBL)	-0.30	0.41	-0.48	0.56	-0.13	0.40		
ε	Tottori (6.59, SS)	0.05	0.66	-0.24	0.78	-0.83		-0.56	0.76
Š	Niigata (6.65, REV)	-0.51	0.77	-1.04	1.18	-1.47	1.52	-1.56	1.57
Rrup=]70-200] km	Northridge (6.73, REV)	0.24	0.66	0.38	0.79	-0.52	0.71	-0.16	0.30
Ē	Loma Prieta (6.94, ROBL)	0.41	0.54	0.46	0.63	0.37	0.87	0.05	0.64
S.	Landers (7.22, SS)	-0.40	0.56	-0.55	0.71	-0.38	0.54	0.00	0.52
	Average CA	-0.14	0.55	-0.22	0.69	-0.21	0.62	0.01	0.53
	Average ALL	-0.19	0.64	-0.46	0.85	-0.74	1.00	-0.85	1.04
	Reverse (REV)	0.00	0.68	-0.02	0.82	-0.69	0.90	-1.03	1.13
Mechanism	Reverse-Oblique (ROBL)	-0.01	0.68	0.02	0.66	-0.03	0.50	-0.21	0.46
	Strike-Slip (SS)	-0.01	0.58	-0.24	0.66	-0.53	0.80	-0.21	0.46
	Normal (NM)	-0.13	0.36	-0.24	0.00	-0.02	0.00	-0.40	0.71
	- Constant (mm)								
Total	Average CA	-0.08	0.61	0.03	0.63	-0.36	0.64	-0.30	0.59
Ţ	Average ALL	-0.04	0.65	-0.05	0.71	-0.55	0.79	-0.64	0.83

Sample results

Part B. Southern California (M6.2, SS, Z_{tor} =4 km, R_{jb} =20 km)

Evaluation

1. Self-assessment from Modelers – based on technical basis behind method

		PSA period range						
	Magnitude	[0.01-0.1] s]0.1-1] s]1-3] s	>3s			
Rrup=[0-20] km	5-6							
	6-7							
	7-8							
	>8							
Rrup=]20-70] km	5-6							
	6-7							
	7-8							
Rr	>8							
ε	5-6							
00Z	6-7							
Rrup=]70-200] km	7-8							
Rrug	>8							
Mechanism	Reverse (REV)							
	Reverse-Oblique (ROBL)							
	Strike-Slip (SS)							
	Normal (NM)							

Evaluation

- 2. Evaluation committee
- Evaluate the method developer's selfassessments
- Evaluate the GOF for part A and B
 - PSA controlling factor in evaluation
 - Various numerical criteria for bins of M, R, T: (e.g. improvement relative to GMPEs, trends with distance)
 - "Verdict" for each methodology
 - Applicable NOW for a given region, distance, bandwidth?
 - Limitations (close R, large M, etc.)?
 - Method needs refinement?

- Validation of methods for CENA scenarios (second round)
 - Requires appropriate regionalization
 - Requires site correction factors
- Forward simulations

Thank you!

- N. Abrahamson, P. Somerville, F. Silva, P. Maechling,
- R. Archuleta, J. Anderson, K. Assatourians, G. Atkinson, J. Bayless,
- J. Crempien, C. Di Alessandro, R. Graves, T. Hyun, R. Kamai, K. Olsen,
- W. Silva, R. Takedatsu, F. Wang, K. Wooddell,, D. Dreger, G. Beroza,
- S. Day, T. Jordan, P. Spudich, J. Stewart and their collaborators...

