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New This Year! Lightning Talks at 3:00 Tomorrow
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Theme A. Modeling the Fault System

1. Stress and Deformation Over Time
2. Special Fault Study Areas: Focus on Earthquake Gates
3. Community Models

www.scec.org/research/cxm
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1. Stress and Deformation Over Time
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Recalculated dates of the two most

recent surface ruptures on the
southernmost San Andreas fault
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RESEARCH ARTICLE | JULY 17,2018
Dates of the Two Most Recent Surface Ruptures on the
Southernmost San Andreas Fault Recalculated by Precise Dating

Southern California
Earthquake Center
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Analysis constrains the open interval to

300 years with 150 yr recurrence for the
of Lake Cahuilla Dry Periods

Thomas K. Rockwell; Aron J.Meltzner; Erik C. Haaker

Bulletin of the Seismological Society of America (2018)

two MRE that is consistent with 180 yr

recurrence from record of earlier events
https://doi.org/10.1785/0120170392
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Slip History of the Sierra Madre fault

Southern California
Earthquake Center
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(Poster #254)
Pls: Burgette, Lifton & Scharer
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Sierra Madre Fault shows a decrease in
slip rate by factor of ~2 in last ~60 ka.
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SSAF creep rate modulations

INSAR data spanning 1992-2017 show
decreasing creep rate with time
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Positive correlation between Coulomb stress
changes from M>7 events and SSAF decadal
creep rates estimated from INSAR
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Seasonal Stress Changes

Horizontal seasonal signals with
dilatational strains

19 g - -8 -1 - e -2 m S T S| |

£ —— — — —
128 2 -2 A W -ne’

o M3
L | I <

-2 -2 X -9 18 T

10

Dilatation

Southern California
Earthquake Center

Associated Coulomb stress changes
on the right lateral strike-slip faults
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Stress patterns

During the drought, the augmented summer signals
escalate the summer stress patterns along the San
Andreas Fault zone and the Eastern California Shear Zone.

Kim, Bahadori, and Holt. (Poster #156)
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Nontectonic trigger of South Napa EQ?

Dilatational strain (left) and Coulomb
stress (right) estimated from CGPS
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Kraner et al., JGR (2018)
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Majority of the dilatational strain is

attributed to groundwater changes;
its late summer peak is a plausible
trigger for the August 24th event.
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likely ruptures in large multi-fault events.

Hughes et al. (Poster #253) Holocene slip rate of 1.3 +0.5/-0.3 mm/yr.




2. Earthquake Gate




SC/EC Stress Inversion of Focal Mechanisms

34°24'

34°00'
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33°36'

» Variations of stress ratio ( r = ?: Zz ) in areas with high
topography, similar feature is seen in CP, SGP and HS

+ Significant rotation of maximum horizontal compressional
stress (Spmax) With depth in Crafton Hills
* Numerical simulations aid in understanding the results

Abolfathian, Johnson, Ben-Zion (Poster #155)
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Stress ratio

Southern California
Earthquake Center

Crafton




Southern California

SCEC St
Odd normal slip focal D,G?P Creep Mode!
mechanisms in the San mﬁ
Bernardino basin could §§ 220
be due to deep creep on | £E
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Off-fault Focal Mechanisms not Representative of Interseismic
Fault Loading Suggest Deep Creep on the Northern San Jacinto . q q
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Strain rate and earthquake cycle stress accumulation
influenced by crustal rlgldlty variations: Cajon Pass
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Updates to present-day strain rate model (3) Wm o ime weeme ey
New paleoseisimic rupture estimates (1) and changes due to crustal rigidity variations (4); Stress accumulation rates (5) and event
+ new 4D crustal deformation model that A decrease in rigidity = increase in strain rate

thresholds (6) are reduced along the Cajon Pass
Ward, Smith-Konter, Xu, and Sandwell; Poster #260 when crustal rigidity variations are introduced.

accounts for heterogeneous crustal rigidity (2)



3. Community Models




400000

(Above) SCEC has developed a new Central California Velocity Model
(coverage region indicated by larger white rectangle), called CS173-H,
that includes detailed representations of the San Joaquin Basin (smaller
white rectangle - center) and the Santa Maria Basin (small white square).

(Right) Vs at 1K depth and horizontal cross section of the CS173 velocity
model show the original CS173 velocity model (Top Row) and the
updated CS173-H velocity model (Bottom Row) which includes the San
Joaquin and Santa Maria Basins.

CyperShake 17 !ncms Section from (-




S C/ EC Southern California
Updated SCEC CFM v.5.2 Fault Representations for 2018

Earthquake Center

.

Nicholson et al. (Poster #145) -
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New CFM webpage @ https://www.scec.org/research/cfm
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Southern California
Earthquake Center

CFM fault surfaces reformatted for _
viewing in 3D with free MoVE Viewer
app are available to download

Example of reqular-gridded re-meshed
CFM fault surfaces at 1000-m intervals
for the LA Basin area

Webpage provides user downloads of CFM 3D fault sets,
regular-gridded re-meshed surfaces to facilitate modeling,
GIS map representations in X3D, and tools for viewing and

evaluating the updated CFM-v5.2 fault set in 3D.




7 o
S C/ EC Southern California

Geologic Framework for the SCEC CRM e

» Updated GF province definitions
 Registered province boundaries to SCEC USR features

» Generated shape and lat-lon files for province boundaries
» Generated prellmlnary 1D lithological profiles for all GF provinces
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Legg and Oskin (Poster 151); Hearn et al. (Poster #152)
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SC/EC outhern California
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BASIN Project: Basin Amplification Seismic INvestigation

Poster #099
Tracking the propagation of waves from the San Andreas Fault to Los Angeles
@© CISN station
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- 4,500 1C nodes rolled across 17,000
locations (30 days/station)

- 200 3C nodes static (120 days/station)

- 60+ deep hole shots
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Hollis & Clayton (Poster #097)
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A Proposal for Industry-Scale
Seismic Survey in the LA Basin

Analyses

30 Shear Wave Velooty
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Uin, Fan-Chi, D. Ui, R. Oayton, D. Hotlis, 2013, High-resolution
shallow crustal structure In Long Seach, California: application

of amblent notse tomography on a dense seismic arrag
Geophysics, 78(4), 045-056, doi:10.1190/2202012-0453.1

Clayton, R., 2018, Imaging the subsurface
with ambient noise correlations”, SEG2018
extended abstract

Nakata, N., . Chang, J. Lawrence, P Boue, 2015, Body
wave extraction and tomography at Long Beach,
California, with ambient noise interferometry, JGR,
120, 2,do:10.1002/2015/6011870

Southern California
Earthquake Center

Data Products
3D Basin Structure
3D Shear and
Compression Velocity
Structure
Shallow Vs500, Vs1000
maps
Active Structures
And more...

Seismicity Varistions Along the Newport-irglewnod Fauit

Rosecrans | ¥
Array

ma

LI i S R §
et

Inbal, &, 1-P Ampuero, and R. Clayton, (2016) Localized Seismic

Deformation in the Upper Mantle Revealed by Dense Arrays, Sclence,

354, pp88-92, doi;20,1126/science.aaf1370
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Southern California
Earthquake Center

Differential noise interferometry kernels

Non-isotropic azimuthal noise
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Kernels of differential measurements reduce artifacts and bias
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LOS displacement (mm)

CGM InSAR working group (Figure: Xiaohua Xu)
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Consistency of CGM InSAR time series

Time series estimated using different approaches, different processing
software, show good agreement with each other and with GPS
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4. Data-Intensive Computing
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Similarity Matrix Profile (MP)

Efficient method to identify most similar
sub-sequence in continuous data

1

> Many MP peaks!
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Shakibay Senobari et al. (Poster #063)



Characteristics of ground motion generated by interaction of wind
gusts with trees, structures and other surface obstacles

Geophones targeting local Waveforms originating from  Wind & temp with borehole
vegetation and structures surface structure seismometer spectrogram
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Johnson, C.W. et al. Wind interacting with surface structures, trees, etc. can mask microseismicity
(Poster #305) Some of these surface interactions are observable at 150 m depth from 1-8 Hz




Generalized Seismic Phase Detection (GPD)

[ Input Waveforms ) Feature Extraction System )) Fully Connected NN )] Class probs.

* Train a Convolutional Neural Network classifier
with millions of labeled example waveforms

250
* Can reliably recognize i) P-waves, ii) S-waves, iii) sl
ambient and impulsive noise signals o0
1.0 "
z 1 )\ | f \ q ( \
* Has similar sensitivity as template matching, but g o ” f Nl P |
does not need explicit templates T g _ N Al VB

85655 85660 85665 85670 85675 85680 85685
Time (sec)

Meier et al. (Poster #064) / Ross et al., 2018, BSSA



Characterization of High-Wavenumber Subsurface Random Heterogeneity Using a Very
Dense Array at Diablo Canyon, California

Receiver geometry Ambient-noise correlation Rayleigh-wave group velocity map

35°18'N

35°14'N

35°10'N

120°5AW - 120°50W  120°4BW  120°42'W B
W -1209 -120.85 -120.8 -120.75 -120.7
- 7200 v-comp geophones e , ,
_ 10 Hz Coherent waves are extracted We can. estimate detailed
205 20 k2 by correlation techniques. heterogeneity of the subsurface

structure.

- Total 1.5 months recording : ——
Very Dense Array is key to estimating

Nori Nakata (Poster #298) subsurface structure with high resolution.
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« Ambient noise tomography on
the Long Beach array (5200
geophones in 10x7km area).

* Higher resolution than
conventional (e.g., Eikonal)
tomography.

* The seismic image consists of
pixels and patches.

* No training data required.

Bianco, Gerstoft, Olsen, Lin (poster #94)

Machine learning inversion

Latitude

33.85"
33.83°
33.81°
33.79° ©

a377°. B

0

1km Patch size

|
24182°  241.84°
Longitude

33.75°
241.8°

Southern California
Earthquake Center

Machine learning applied to tomography

Conventional (Eikonal)
tomography

0.85

33.85°

33.83°

33.81°
0.7

Phase speed (km/s)
Latitude

33.79°

33.77°

p.

0.5 33.75°

241.8° 241.82° 241.84° 241.86°

Longitude

High-velocity anomaly appears to be the
main producing aquifer in Long Beach).
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1. A toy model for frictional sliding
with earthquake-like statistics

Moving Plate v
Z 7 7 - 7
il [ ,'// / __Lf L4 /,- / ’

= o f

Frnctlonal Surface

2. Multivariate LSTM Model Setup

.G [ ) ) (G ) -

'

dense
.

[ output J

displacement time history

Training and Testing dataset

Y

o 20000 dOODD 60000 BDOOD 100000 120000 140000
Time

Training Data
Testing Data

4. Single Feature LSTM VS Multivariate
Feature LSTM Prediction

a. Single Feature LSTM

Prediction of slip under a single feature LSTM Network

predicted
true

0.6 Test RMSE=00546

Physics-constrained deep learning
networks encode the characteristics
of spatial and temporal derivatives
in governing PDEs by combining
Convolutional Neural Networks
(CNN) and Long Short Term Memory
(LSTM) Networks.

‘ '
f | T
0.4 ,I

Ll 'w' I
¥ ]
n’l 1” ' FUL L

o 5000 ‘l()()()() 15000 70000 25000 30000 35000 40000
Time

0.5

o
#0.3

0.2

UL

0.1

|

0.0

Southern California

Physics Constrained Deep Neural Networks (PCDNN) ="

3. Training and Testing Dataset for block

b. Multivariate Feature LSTM

Prediction of slip under a Multivariate feature LSTM Network

7 pracicoed Test RAMSE=0.0472341

REIm
LA

00 120000

40000 60000 80000 1000

Time

0 20000

By using constraints of the PDE
structure, PCDNN uses less data in
training, and its prediction outperforms
traditional time series prediction using
single feature LSTM or Poisson’s

processes.

This framework may improve earthquake
forecasting and may significantly speed
up forward computation as well.

Elbanna et al. Poster 199
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Analysis of offset stream channels with very high resolution™""*

UAV lmagery Southemmost San Andreas Fault

Many small and large displacements =
ranging from 50 cm (creep) to 100 m :

These 2 examples are offset 9-10 m
Blanton et al. (Poster #226)
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Earthquake Simulations on Deep Learning Hardware

SeisSolSCFP64 mmmmm 1.00 Speedup over SeisSol by using tensor-

) ) instructions (4FMA) and fused simulation

SeisSol SC FP32 mmE—s .66 technology (16 Knights Mill processors, GTS,

EDGE single FP64 LIBXSMM s 1 17 16 fused FP32 simulations, fifth order).

EDGE single FP32 LIBXSMM IS 60

EDGE fused FP64 LIBXSMM N ? 70

EDGE fused FP32 LIBXSMM e /.01
EDGE fused FP64 Vanilla C++ 1 0.04
EDGE fused FP32 Vanilla C++ 1 0.05

0.00 100 200 300 400 500 6.00 7.00 8.00

Achieved efficient HPC utilization of the
Intel Xeon Phi for Deep Learning.

Breuer et al. (Poster #289)




Vertically-Incident S-wave

9/26/18

Theme B. Understanding Earthquake

Processes

5. Beyond Elasticity

6. Modeling Earthquake Source Processes
/. Ground Motion Simulation

8. Induced Seismicity

Rayleigh Horizontal

Southern California Earthquake Center
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5. Beyond Elasticity
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Large Scale: Rock damage production in southern California

Damage volume, 1981-1990

35.5

Damage volume, 1981-2017

-

A quasi-linear zone with
ongoing damage production vic
between the Imperial fault = * (i
and ECSZ g

The regions around the

1992 Joshua Tree, Landers -
and Big Bear events have . e A
background seismic activity Y
before 1990 ® N "‘“%.
San Dieg *., Ecowo %
32 . ‘ * . .

Ben-Zion & Zaliapin (Poster #066)
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Intermediate Scale: High-resolution fault imaging

DDT = double-difference tomography
FZHW = fault zone head waves

N
o

DDT model

-118.00° -117.50° -117.00° -116.50° -116.00° -115.50°
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= iy \Y ) B
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8_24 . --»c/-\,‘,\/\l |IJ f ‘.‘ 20 % ‘2-8%
S ,' V'l 600 4 ® \,
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— premmns AL N |
fo |V R eVl AR
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g-30 gt 16 5.85 A NA
S ‘ A i . —
I e YA /AY : 04 -02 0 02 4 ' \
32 \f Ti
| 14— ime (sec)
-1 05 0 05 \
M |
Time (sec) \'A : ‘ ’——‘L/W
12 VAL i . 3-12 km depth[§{ gol——— TV,
3 W NG | 04 -02 0 02
10 -118.00° —117.50° ~117.00° ~116.50° ~116.00° —115.50° Time (sec)

06 _0'{4-"}33(5 ;)c) 02 Implications of imaging results:

SAF earthquakes likely propagate to the NW and SE from San Gorgonio Pass.
Rupture on the Mojave SAF can easily trigger continuing rupture on the SJF.
Share et al. (Poster #101) | NW rupture on the SJF not likely to trigger continuing rupture on the SAF.




Small Scale: Microstructural and microchemical analyses of active faults

High energy X-ray mapping at the Stanford Synchrotron |
-+ Lightsource for geochemical analyses of San Andreas at
f Lake Elizabeth Core at Lake Elizabeth (Edwards et al., 2018).

Lots of energy goes into chemical
alteration and distributed damage.

F T g B

Evans et al. (Poster #169)
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SC/EC S
How does inherited structure and fabric control fault loading?

Width of shear zones and New, dense broadband deployment Evidence for fabric at depth
fault loading mechanism? across ECSZ faults to infer structure N rea e

il € 7 B

A B
N N W
crugtal faults persist through Moho
50
N\ crust \\\ JNG & 0
loho N \ NP
SN N N - Co= : 30
N NN , Dipping fa:bn " - DAL
AR AN from receiver % gA\W) % S 20
~ mantle lithosphere . i A\ :
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- ~ o
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\ _ _ _ . )
- “M:dverthoriz . “Fgpr
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Becker et al. (Poster #157) Fault/shear fabric reactivation results in non-optimal

Schulte-Pelkum et al. (#159) orientations (dipping strike-slip); anisotropic rheology?

depth (km)



6. Modeling Earthquake Source Processes




SC/EC SCEC Initiative on Comparing Simulations of Soutien Calfri
Earthquake Sequences and Aseismic Slip (SEAS) '

Led by Junle Jiang and Brittany Erickson

First workshop on April 23-24, 2018 in Pomona, jointly w/ dynamic rupture group.

60 participants from 7 countries (half students/postdocs); 11 modelers in first SEAS benchmark.
First SEAS benchmark: 2D elastic, quasi-dynamic, planar fault, rate-and-state friction

475 1 |
s abrahams lambert
. 3 z ? 450 barbot.2 liu.2
B free surface cattania luo Q) — T By RS
~ 5 25 arckaon wel £ cattania (Canilla Cattan e
15 (vagiog L
— [ i jiang.2 xma 2 o 100 (OO - Yilgét Lue, San it and Pl hepun

rate-and-state fault s e | [ kozdons g oy v

R ' particle motion @ | =

@ 375 {| e

5 /1 e

350 / a -10
slip rate imposed at \, - § / 3
£ 325 |
( - b 2] ——// |
» 30.0 (N L | U 0 T | .
homogeneous, |linear elastic bulk = s L— — ' e
T
1 Bl o 15 -10 -5 0 5 10 15 20 25 30
0] OB T Time (s) Time (s)

« SCEC talk on Monday 14:00, corresponding poster #192.

 Future SEAS benchmarks to include:

— Fully dynamic earthquake sequences, coupling with fluids, involving multiple fault segments and
nonplanar fault geometries, material heterogeneities, and bulk inelasticity.

* Objectives: provide community tools for best practices, move towards validating models with data.
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Mechanisms of Unsteady Shallow Creep on Major Crustal Faults

Why do spontaneous/triggered shallow creep events occur on some crustal faults, such as the
Southern San Andreas fault, Superstition Hills fault, and North Anatolian fault?

Jiang and Fialko (Poster #188)  Explore depth-dependent fault conditions promoting episodic creep
+ Construct long-term fault slip history from seismic-cycle observations

B i |

0.6

creep rate
Vs

N

conditionally stable
friction? dilatancy? others?

Depth (km)
log10(V)
effective friction coefficient

0.4

12 L L L L . .
d d ________________ - 700 800 900 1000 900000 1000000 1100000 1200000 1300000 1400000

Time (yr) , Time step #

time evolution of slip rate time evolution of friction

Dynamic strengthening processes are likely important in
controlling the seismic potential of these shallow fault zones

Depth




7 Southern Californi
SC/EC outhern California

Earthquake Center

Kali Allison and Shear Heating and the Brittle-Ductile Transition (BDT):

Eric Dunham Earthquake Cycle Simulations with Power-law
(Poster #161) Viscoelasticity and Thermomechanical Coupling
‘withoq.t’ shear heating ~with shear heating

We investigate how pore pressure,
background geotherm, and frictional
shear zone size affect earthquake
cycle characteristics and the depth of

' 0 Tl N
S \ MY -~ A\ . VAN .
—_— \ \ \ Y e i s T, \ lr.‘ gz . \

Shear heating moves

earthqakes

\ the BDT shallower.

“) fault creep l © shallowe the BDT.

total thermal anomaly temperature rise temperature rise from

(difference from 1D geotherm)  from fault friction N ?ulk viscous flow  The contributions

200 20 from frictional and

e s F Bt —a s viscous shear heating
< I w £ = S0 w:  are roughly equal in
s o €. . magnitude.

0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

. 2 ; distance from fault (km g e 3 g
distance from fault (km) S {kmn) distance from fault (km)



s¢/e€ A FEM-based Dynamic Earthquake Simulator for Earthguabe Coner
Geometrically Complex Faults with RSF

EQquasi

Kyuttl = ftt1
N
dt,, <n=dt \\\\\‘
N
Slip, slip-rate, \
= state variable, - >

S stresses.
N

uuuuuu

L]
3 =\
Based on the variable time stepping scheme (Lapusta et al., 2000), i =
the inertia term should be taken into account when the criterion is met. .~ ——/:? — > %
= == .f_,,__\»,._,

Along naum

. The FEM-based dynamic earthquake simulator makes fully dynamic
Liu et al. (Poster #205) EQ cycle simulations on geometrically complex faults possible
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Crack models of
repeating earthquakes

Numerical simulations:
Analytical results explain the
observed recurrence interval

scaling of small repeating
earthquakes (Tr ~ M,"®)

Recurrence interval (yr)

Cattania and Segall (Poster #190)

central ruptures

lateral ruptures (no partial ruptures)

Southern California
Earthquake Center

partial ruptures

r

- Time to nucleation

T T

R1/3 = == Time to full ruptures
F§1/6 )
s A
- : —-—_"—-__‘
Ty A
Numerical
simulations °
Analytical
results
2R_ 4.3R_
L VeS| SO T | e U 11 1§ L |
12 13 14 15
10 10 10 10

Moment (Nm)
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Earthquake Source time functions

Sub-event analysis in source time S ]
Sub-events scale with final earthquake size

functions
1elB
w15 s SCARDEC '5'STF Observations Simulations
] m— (3aussian-built STF o' e
:ZE‘_ 1.0 - + Detected peak E e =
E - Amu MW Normal é o'k
E 1071 E
0 5 lIQ 15 20 \Z./ E 10lok
. . Time (st) § 10 E
Estimating the magnitude before the = g
earthquake stops S g
E 1018 g ml-l L

102 1l " ; ’
10" 1o’ 10!
Main event moment per unit width (Nm/m)

i i -
median Mo (Nm)

Specific and highly heterogeneous fault strength
Moderate earthquake rupture determinism

Magnitude difference

O e e s7F Saration” Danre et al., Denolle et al., (Posters #213, #214)

n



SC/EC Faulty Intuition about b-values and Aftershock ot o
Productivity within a Fault Network

b-values appear to be lower near faults . . . ... unless you define the faults ahead of time.
Pre-CFM3.0 Earthquakes (1981-2004) Post-CFM3.0 Earthquakes (2004-2018)
| 0.0 km-03km ' 6-0.0km-0.7 km
0.3 km - 0.6 km 6—0.7 km - 1.4 km
- 0.6km - 1.1km o 1.4km-2.1 km
1.1 km=1.7 km 4 2.1km-2.8km
1.7 km - 2.4 km L 2.8 km-3.6 km
4 km - 3.3 km > 36km-45km
% g; Ilim-:g ::m A g?tm;’z:m
8 g ol g . o 74km-10.3km
~6.2km - 9.4 km 2 e =
= ~-9.4km-200km |V = . ok 100
= Z
()
g ’% 10°
3 E
: 3
O 10
J 10° &
8 3 4 6 7 8

5
Magnitude (M)

Suggests the CFM is overly tuned to past seismicity

Page & van der Elist (Poster #044)



8. Induced Seismicity




Injection Induced Earthquake Forecasting In Oklahom

Zhai and Shirzaei, poster #35

Physics-based model of injection-fluid diffusion,
Coulomb stress change and rate-state nucleation

reproduces features of induced seismicity in OK.
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a Earthquake Center
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Induced seismicity mitigation and aftershock productivity in Oklahoma

T.H.W. Goebel!, Z. Rosson?, E.E. Brodsky!, J. Walter?>
1 UC Santa Cruz, 2 University of Oklahoma
Aftershock productivity
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Goebel et al. (Poster #089)



s ECZWodeling slip due to fluid injection into rate-and-state faultiﬁo‘?'t”’ez“%”rg

Poster 186: Stacy Larochelle, Nadia Lapusta, Jean-Paul Ampuero, and Frédéric Cappa

Field experiment: Aseismic slip triggered 2D BICyclE code for simulating fault Initial aseismic fault slip
p p trigg y ulating
by fluid injection + seismic later slip with along-fault fluid diffusion Is well-reproduced by a range of fault
y J p g /
N properties
o Fault plane 0 200 400 600 800 1000 1200
- hole 03 elmbgddedinto 0.6 s g‘l_ et I‘ 2015) ; ; ;
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/. Ground Motion Simulation




Improved nonlinear High-F simulations

Surface displacement of elliptical basin: SV-incidence

Elasti
B
. o* ALE M : .
Poedyglsic Ge W
7 s :AN'EN
Lo

t=2.5sec t=5sec t=7.5sec Parallel-series

lwan model
Elastoplastic: Borja-Amies bounding surface plasticity

Top layer Bottom layer
V.. =200m/s V.. =400 m/s
Ve = 346 mis Vo =693 mis

p = 1800 kg/m* o = 1800 kg'm’

Elastic half space
SV wave : ¥, = BOD m/s
i 1 LS
polarized 45°; V. =1386m's

(#——7\\” = 1800 kg/m’
—~—

o
Roten et al. (Poster #019)
Esmaeilzad;h Seylabi et al. Beyond perfect plasticity:_ Elasto_plastic 3D const_itutive_ models
(Poster #020) for the shallow crust improving strong GM simulations




SCJEC

Higher resolution imaging techniques

35.32

35.3

35.28

35.26

35.24

35.22

35.2

35.18
0.5 Hz

-120.9

35.16 05

-120.85 -120.7

-120.8
Group velocity inversion of noise correlation

-120.75

Nakata (Poster #298)

Southern California
Earthquake Center
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Sharp discontinuities and basin edges
Williams et al. (Poster #023)

-114

Retailleau & Beroza (Poster #304)
Jia et al (Poster # 098) etc...

New imaging techniques can improve shallow crust velocity
models, and in turn the accuracy of High-F simulations




Before

Wang et al. (Poster #010) 1

Loma Prieta (50 realizations)

—— Simulated
----- Empirical

The inter-frequency correlation of
epsilon is important for structural risk
applications.

Data reveal that neighboring
frequencies are generally correlated.

The inter-frequency correlations are

well simulated by our post-processing -

method.
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Including inter-frequency correlation into the SDSU BBP Module
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Theme C. Characterizing Seismic Hazards

9. Probabilistic Seismic Hazard Analysis a) =
10. Operational Earthquake Forecasting 3,
11. Earthquake Early Warning B Lo
12. Post-Earthquake Rapid Response ¥ [ e
RS T T . UCERF3-ETAS ke i7"+ Observed Catalog 3 o ---PG; o "
B (28-year o R Lt (1984-2012) . D) g
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Southern California Earthquake Center



Use of CvberShake ground motions for engineering analysis
CyberShake NGA-West 2

dolt 1, M =« 7.35 R » 12km, comp 2

§ —Target spectrum 5 02 ‘
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The CyberShake motions appear suitable for engineering
evaluation of tall buildings, per the ASCE/SEI 7-16 design

standard

Teng & Baker (Poster #006)

Southern California Earthquake Center



CyberShake 15.4 and 17.3 Validation
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Meng et al.
(Poster #024)




CyberShake Study 18.8 Northern CA

5816, ERF36, genslip-v3.3.1b, AWP_ODC_SGT GPU

Science Collaboration with USGS

. Several science and technical participants
“ 180 x 390 km
869 sites (32 overlap with 17.3) 1
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Callaghan et al. &
( Poster #29 5) Southern California Earthquake Center



Collaboratory for Interseismic Simulation and Modeling (CISM)

Kevin Milner, Bruce Shaw, Jacqui Gilchrist, Tom Jordan, Keith Richards-Dinger, Jim Dieterich, Yifeng Cui, Dmitry Pekurovsky

Fully physics-based PSHA with rupture slip-time histories from RSQSim
and 3-D deterministic ground motion simulations from CyberShake

USC Hazard Curves

10

10" RSQSim, CyberShake
o RSQSim, GMPE
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5
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( Posters #031-03 2) Southern California Earthquake Center
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Working Group on California Earthquake Probabilities (WGCEP)

UCERF).ETAS
. A t

Short-em tine-depeadent,
based oo clusterisg statisties

Field et al. (2014, 2015, 2017)

UCERF3-ETAS

SEIAMOLOGICAL SOCIEYY OF AMERICA

UCERF3-ETAS paper published: “Candidate Products for
Operational Earthquake Forecasting lllustrated Using the HayWired
Planning Scenario....” (Field & Milner, 2018, SRL).

UCERF3-ETAS was formally evaluated by NEPEC in Oct 2017 and
they recommended operationalization on an on-demand basis (not
automated)

UCERF4 planning paper in press in SRL: “Improving Earthquake
Rupture Forecasts (Using California as a Guide)”

Fourth Powell Center meeting was held in February to address
model testing, which led to a number of proposed milestones for
CSEP2

Based on work in the CISM project, paper has been published
comparing RSQSim-implied hazard calculations to that for UCERF3
(Shaw et al.,2018, Sci. Advances).



Collaboratory for the Study of Earthquake Predictability (CSEP)

SRL Focus Section July/August 2018
RESEARCH LETTERS guest'editors Andy Michael & Max Werner

Volume 89, Number 4 July/August 2018

Schorlemmer et al: The Collaboratory for the Study of Earthquake
Predictability: achievements and priorities.

Cattania et al: The forecasting skill of physics-based seismicity
models during the 2010-2012 Canterbury, earthquake sequence.
Bird: Ranking global forecasts with the Kagan information score
Jackson: Testing the classic 1988 forecast

Rhoades et al: Highlights from the first ten years of the New Zealand
earthquake forecast testing center.

Taroni et al: Prospective CSEP evaluation of 1-day, 3-month, and 5-
year earthquake forecasts for Italy.

Strader et al: Prospective evaluation of global earthquake forecast
models

Akinci et al: Ensemble smoothed seismicity models for the new
Italian probabilistic seismic hazard map.

Savran et al. (P oster #033) 9. Ogata eptal: Exploring magnitude forec:sting of the next earthquake

Southern California Earthquake Center

SEISMOLOGICAL SOCIETY OF AMERICA




Theme D. Reducing Seismic Risk

13. Risk to Distributed Infrastructure

14. Earthquake Physics of the Geotechnical Layer

Shallow stochastic heterogeneity
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Spatial correlations in ground motion simulations
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CyberShake simulations enable
controlled study of the role of rupture
and path effects on spatial
correlations—an important property
for infrastructure risk evaluations.

Chen & Baker (Poster #007)



Enhanced BBP capabilities

Among others: Fourier-based spectral amplification ratios
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Fourier amplification ratios to modify BBP time-
series on rock-outcrop; complement efforts to stir
GMPE site factors towards Fourier




SCEC-UGMS tool is now publicly available online

https://data2.scec.org/ugms-mcerGM-tool v18.4/

SC/EC UGMS MCER Tool

Application User Guide Disclaimer Contact

Input Parameters

Report Titie

My Report

Latitude and longitude in deci g (or click
on map to select site):

Latitude (e.g. 34.45)

Longitude (e.g. -118.35)

Site Geotechnical Classification:

(. ] Site Class - Select - :
Ste Class NOT automatically determined based cn site iocation
-OR-
Vs (M/s)
-OR-

Unknown (Vs30 estimated from
Wills et al., 2015)

Site-Specific MCER & Design Response Spectra per Sect. 21.2, 21.3, 21.4 of ASCE 7-16
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The UGMS MCEg tool was developed by the SCEC Committee for Utilization of Ground Motion Simulations (or *UGMS
Committee®) from research supported by the Scuthemn California Earthquake Center (SCEC). SCEC Is funded by NSF
Cooperative Agreement EAR-1033462 & USGS Cooperative Agreement G12AC20038. For more information on the UGMS
Committee, visit hitps.//www.scec.org/research/ugms.

Pauk et al. (Poster #297)

Inclusion of CyberShake results into building code
approach to design ground motions for tall
buildings.



https://data2.scec.org/ugms-mcerGM-tool_v18.4/

11* National Conference on Earthquake Engineering

SCEC as co-organizer with EERI ] ] . . . L
1200+ registrants SCEC Ground Motion Simulations and Engineering Applications Workshop

800+ papers MONDAY, JUNE 25, 2018
Very strong SCEC presence

o Organization 09:00 - 09:10 Welcome and Introduction (PDF, 2.2MB) Christine Goulet
R PUb"City and media relations 09:10 - 09:40 Overview of Ground Motion Simulations: Physics and Modeling Alternatives (PDF, 6.7MB) Robert Graves
. . 09:40 - 10:00 SCEC Simulation Platforms, Validation Objectives and Techniques (PDF, 1.6MB) Christine Goulet

* Technical presentations 10:00-10:20 CyberShake Validation - Part 1 (PDF, 1.2MB) Kevin Milner
10:20 - 10:45 CyberShake Validation - Part 2 (PDF, 3.9MB) Xiaofeng Meng
10:45-11:00 Break
11:00 - 11:30 Using CyberShake to Define MCER for Tall Buildings (PDF, 3.6MB / PPSX, 49MB) C.B. Crouse
11:30 - 11:50 Selected Set of CyberShake Seismograms (PDF, 2.6MB) Jack Baker

11:50 - 12:15  Verification and Validation of Ground Motion Simulations from a 3D Modeling Perspective (PDF, 3.1MB) Ricardo Taborda
12:15-13:00 Lunch

13:00 - 13:30 Broadband Platform (BBP) Validation for Pseudo-Spectral Acceleration (PDF, 8.5MB) Kathryn Wooddell
13:30 - 13:45 Introduction to Ground Motion Simulation Validation Technical Activity Group (GMSV TAG) (PDF, 2.8MB)  Sanaz Rezaeian
13:45 - 14:30 Utilization of Simulated Ground Motions for Nonlinear Dynamic Analyses of Tall Buildings (PDF, 8.2MB) Gregory Deierlein
14:30 - 14:45 Break

14:45 - 15:00 Access to Selected Subset of Simulated Ground Motions (PDF, 145KB) Ting Lin

15:00 - 15:15 Access to Simulated Ground Motions from the GMSV Project Through the NHERI-CI portal (PDF, 6.4MB)  Silvia Mazzoni
15:15-15:50 New and Alternative Ideas on Validation Metrics (PDF, 3,7MB) Farzin Zareian
15:50 - 17:00 Discussion and Period of Questions with Panel All

Southern California Earthquake Center
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