

CGS

USGS

CalEMA

Caltech

UC Berkeley

Philip Maechling Information Technology Architect Southern California Earthquake Center (SCEC) 8 May 2013

SCEC: An NSF + USGS Research Center

- Best data transfer mechanisms will depend on computing infrastructure available for both sides and may depend on needed security.
- Linux is standard at CSEP, but computing environment at forecast providers is unknown and likely to vary.
- Selected mechanism must work with providers computing environment.
- Solutions can be characterized as push, pull, publish, subscribe, poll. Both forecaster and testing center will define how they collect inputs and perform their processing.
- There are few enough contributors it may be possible to develop custom solutions for each case.

Scripting Transfer:

Available on must linux computers:

- Remote copy rcp
- Secure copy scp:
- Secure ftp sftp:

Data transfer packages:

Available on hpcc systems. May have stronger security capabilities than more common tools.

- gridftp
- Bbcp
- Globus online

Reliable transfer tools including message oriented middleware.

Commercial and open-source alternatives. Typically same software runs on both systems, senders and receivers.

- TIBCO message oriented middleware
- Antelope ORB
- Rabbit MQ
- Data turbine

USGS Data Tools

Open-source. Integrate into USGS systems more easily.

- USGS Product Distribution Layer (PDL)
- Quake Data Distribution Systems (QDDS)
- Earthquake Information Distribution System (EIDS)

