CSEP Workshop June 6-7, 2012

Is there a role for stress change modeling (fault interactions)
to forecast aftershocks?

Answer: Yes, in hybrid mode with empirical methods (like ETAS).

Results from:

Parsons, T, Y. Ogata, J. Zhuang, and E. L. Geist (2012), Evaluation of static stress change
forecasting with prospective and blind tests, Geophysical Journal International,
v. 188, 1425—-1440, doi: 10.1111/.1365-246X.2011.05343.x.

Segou, M., T. Parsons, and W. Ellsworth (2012), Rate/state friction model implementation for
earthquake forecasts in northern California, Seismological Research Letters, v. 82.
(manuscript in preparation).

http://earthquake.usgs.gov/regional/nca/seminars/2012-05-23/

Or http://on.doi.gov/segou-seminar-2012

Or Google “USGS earthquake seminars”



Issue: Prospective testing of rapid Coulomb stress calculations routinely shows violations
of calculated stress shadows (i.e., 8 October, 2005 M~7.6 Kashmir earthquake).

Causes include: :Rupture source complexity
*Unmodeled dynamic triggering

*Temporal stress evolution (secondary triggering)

Time-space ETAS stochastic declustering implies
secondary triggering issues, but doesn’t explain everything
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HOW IMPORTANT IS SECONDARY
TRIGGERING FOR FORECASTING?

Motivation: Recent studies have supported that incorporation of second

tri enng is a critical aspect in operational forecasting [Parsons et al., 2012] and
p§ studies refer to this as an possible source of uncertainty leading to poor
performance of CRS with time [Toda et al., 2005].

Can we improve CRS-models by
including stress perturbations of smaller
events ?

Designing the test: Loma Prieta aftershocks with
M>3.5 lying in the stress shadow of the mainshock

Goal: Not to study how efficient CRS
forecast models are, but that incorporating
stress changes from 3.5<M<5.0 makes a
difference
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SENSITIVITY COULOMB STRESS CHANGE CALCULATION



Daily Seismicity Rates
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Tests are showing that ~50% of shadow violations can be explained by
secondary static triggering

However, in many cases the initiation of the first shadow violator cannot
be explained with simple Coulomb calculations, meaning that:

(1) Optimal fault orientation calculations are suspect, and that detailed
geological fault assignments are needed

and/or
(2) True mainshock rupture complexity is not accounted for
and/or

(3) Near source dynamic triggering happens



Revisiting global database of stress changes from centroid
moment tensor planes of 119 M=7 EQ’s onto >1300 M=4.5 planes:

Raw result: 61% of events within ~10-250 km range associated with increased shear stress over 20 yr

Global triggered
earthquake rate vs.
stress change
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Revisiting global database of stress changes from centroid

moment tensor planes of 119 M=7 EQ’s onto >1300 M=4.5 planes:

Shear stress changes calculated using 100 synthetic catalogs show expected variability
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Revisiting global database of stress changes from centroid
moment tensor planes of 119 M=7 EQ’s onto >1300 M=4.5 planes:

-Stress-increased ratio grows with decreasing background probability
-Stress-increased ratio grows with increasing magnitude

0.75 0.8

g A B O
S O
§ 0.704-"6" ‘OQOO ---- all data ,,'fi""/
o O /0RO o .+ ©
g e ’ R
% 0.75 o 0 T
8 95% confidence on ratio-
S change significance .-~ 95% confidence on ratio-
» 065 @) . change significance
S  |[ linear fit to all data @ ¢
N~ . o 7
&“ -------- linear fit Pbackground <0.9 '""""'O' _____________________________________
-------- polynomial fit to all data ',
06 | I I I I I I I 07 I L 5 | 1 I '
0.9 0.7 0.5 0.3 01 40 45 50 55 60 65 70
Ppack GoiinG Aftershock Magnitude

(P background >0. 3)



Revisiting global database of stress changes from centroid
moment tensor planes of 119 M=7 EQ’s onto >1300 M=4.5 planes:

Distribution of shear-stress-increase ratios as functions of:
Aftershock magnitude
*Mainshock magnitude
*Background proability
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Examining the the global catalog suggests that the largest
aftershocks are most consistent with static stress calculations

We think this means that when the aftershock planes are well
resolved, then the static stress change calculations are decent
forecasters (consistent ~75-80% of the time above M=6).

Margarita Segou tests this idea with a retrospective forecast test
in Northern California that compares a geologically-based Rate/State
and an empirical ETAS forecast.



FORECASTING EARTHQUAKES IN NORTHERN CALIFORNIA
USING PHYSICS-BASED AND STATISTICAL
MOBELS

Margarita Segou

msegou@usgs.gov, msegou@gmail.com

Stanford Geophysics 5/22/12
BAGS 5/23/]2 a USGS

science for a changing world



CRS components
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* increases the number of free parameters &
refers to optimally oriented fault planes to the pre-mainshock stress field



(3) the use of seismological data should be constrained to data available inside the
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forecast's learning phase (1974-1980) to avoid conflicts arising from any prior
knowledge, which would jeopardize our evaluation

3D-GRID DISCRETE FAULT PLANES

PREDOMINANT GEOLOGY
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today we are focusing
onareas A & B

Area A advantages
* study models’ performance at the off-fault zones
* time-dependency of performance since Watsoville
events occur some months after Loma Prieta

Y Mainshocks
® >Mc3

Area B advantages
* which is the best choice for the near-source region?
CRS or ETAS?
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Different Testing Areas! What we hope to find out?
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@near source
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PERFORMANCE EVALUATION RESULTS

Physics-based models @short-term outperform ETAS
@off-fault region. Formulations based on smoothed-gridded
Coulomb-stress based on optimally-oriented with loading rates on
SAF [0.067-0.3 bar/yr] & receivers based on predominant geology
[0.3 bar/yr] result in better spatial consistency

CRS forecast models are represented @long-term @off-fault region
by models resolved on predominant geology receivers

What happens @near-source region ! ETAS models outperform
CRS models due to low reference rates & stress shadow zones

Critical to incorporate previous important ruptures



In Operational Forecasting
CRS Space

OF

CRS receivers

rely not on an optimum model but in a
combination of best-performing models

we need pre-definition of best-performing CRS models & requires update of the state variable of the
system

CRS models covers successfully the off-fault area where prediction is
critical, no Immediate need for variable slip distributions

introduction of stochasticitg_lfor simulations of early (It day) aftershocks, then revert to observed
aftershocks as ETAS ancestor events, depending on network's detectability



