Focus of "GMSV-SEISM" Efforts

SCEC Ground Motion Simulation Validation (GMSV) Technical Activity Group (TAG) Workshop

Nicolas Luco, USGS (Golden, CO)

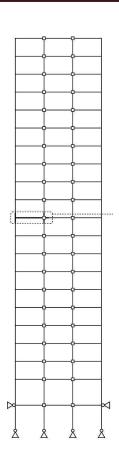
Jack Baker, Stanford

lunio lervolino, Naples

Jonathan Stewart, UCLA

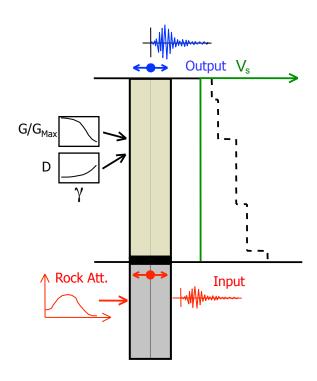
Farzin Zareian, UC Irvine

Background


- GMSV TAG "kickoff" workshop held in January 2011
- Proposal for SEISM (Software Environment for Integrated Seismic Modeling) project submitted in July 2011
- "A key objective of SEISM project is to establish a comprehensive validation framework that conforms to enduser requirements." (from SEISM project proposal)
- Members of GMSV TAG proposed 3-component framework:
 - (1) GMSV using single-degree-of-freedom (SDoF) oscillators
 - (2) GMSV for geotechnical systems
 - (3) GMSV for multi-DoF (MDoF) nonlinear building systems

Subsequent Developments

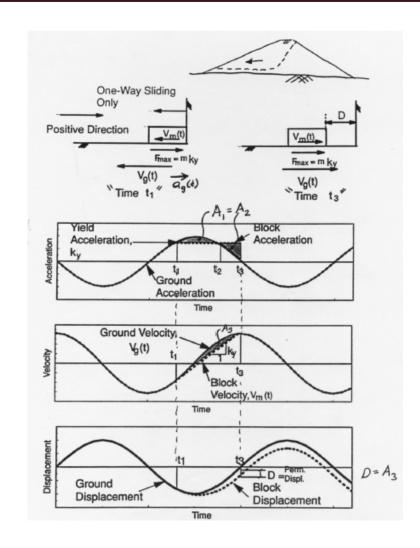
- TAG has realized that "GMSV for SDoF oscillators / geotechnical systems / MDoF nonlinear building systems" are very broad components
- Broadband Platform Validation Project is focused on GMSV using elastic SDoF oscillators, for use of simulations in developing GMPE's
- TAG has seen that tighter coordination between GMSV efforts is needed
- All of these have led the "GMSV-SEISM subgroup" to focus on the following ...


(3) GMSV for MDoF Nonlinear Buildings

- Focus of GMSV-SEISM subgroup members lunio lervolino & Farzin Zareian et al
- Target Engineering Application = Nonlinear Response History Analysis (NRHA) in building code applications
- Objective of NRHA is to estimate mean/median building response (member forces and story drifts) conditioned on an elastic response spectrum
- U.S. building codes already permit the use of simulated ground motion time series

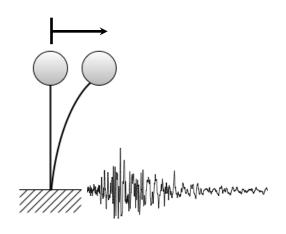
(2) GMSV for Geotechnical Systems

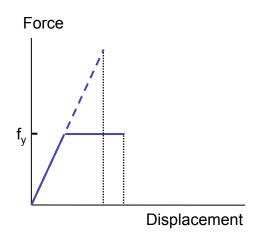
- Focus of GMSV-SEISM subgroup member Jonathan Stewart et al
- Target Engineering Application = Site Response Analysis (SRA) in building code applications
- Objective of SRA is to transform "bedrock" elastic response spectrum to surface spectrum for site-specific conditions


(From C. Goulet)

Less sensitive to duration than other geotechnical systems

(2) GMSV for Geotechnical Systems


- Focus of GMSV-SEISM subgroup member Jonathan Stewart (or Ellen Rathje?)
- Target Engineering Application

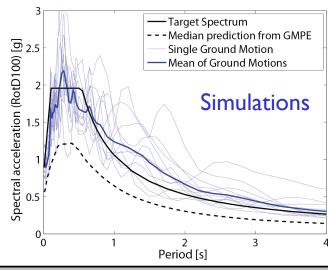

 earthquake-induced
 landslide displacement
 (Newmark sliding block)
 analysis for California Seismic
 Hazards Mapping Act
- Landslide displacements are sensitive to ground motion duration

(1) GMSV using SDoF Oscillators

- Focus of GMSV-SEISM subgroup member Jack Baker et al
- Not targeting particular engineering application, but rather identifying relatively simple metrics that ...
 - have some relevance for more general and complex systems
 - have something like a "correct answer" that we can validate against

Coordination of Three Components


- Although focus is GMSV methodologies, for comparisons across components all are using simulated ground motions from Broadband Platform Validation Project, i.e., ...
 - simulated ground motions for 23 historical and 3 future scenario earthquakes at ~40 stations each
 - 50 realizations for each earthquake
- Wherever possible, all components are performing the same types of GMSV tests, again for comparison purposes
 - How do GMSV conclusions compare for SDoF oscillators vs. geotechnical systems vs. MDoF nonlinear buildings?
 - 50 realizations for each earthquake


GMSV-SEISM Validation Test 1 of 2

- Compare analysis (e.g., NHRA or SRA) responses to simulated vs. recorded ground motions for historical earthquakes and station locations
- The multiple realizations for each historical earthquake from the Broadband Platform Validation Project make it possible to rate the simulation models via Bayesian Model Selection
- This validation test can also be applied for elastic SDoF oscillators (in coordination with BPVP)
- Ground motion time series from Broadband Platform Validation Project will need to be selected/adjusted for consistency with site profile at each station location

GMSV-SEISM Validation Test 2 of 2

- Compare analysis responses to simulated vs. recorded ground motions that have substantially similar elastic (or inelastic?) spectra
- Isolates any differences in responses to simulated vs. recorded ground motions beyond those induced by differences in spectra
- Also tests use of simulated ground motions from an archive/database in building code NRHA or SRA applications

Summary

- GMSV-SEISM subgroup is focused on coordinated validation efforts using/for ...
 - 1. Single-degree-of-freedom (SDoF) oscillators
 - 2. Geotechnical systems (e.g., site response, liquefaction analysis)
 - 3. Multi-degree-of-freedom (MDoF) nonlinear building systems
- Some efforts target particular engineering applications:
 - Nonlinear response history analysis in building code applications (lervolino & Zareian et al)
 - 2. Landslide displacement or liquefaction analysis for California Seismic Hazard Mapping Act (Stewart et al)
- Other efforts focus on relatively simple metrics that can serve as "validation proxies" (primarily Baker et al)