USGS Strategy for Dynamic Earthquake Likelihood Forecasting (the USGS approach to Operational Earthquake Forecasting)

Michael L. Blanpied
USGS Earthquake Hazards Program
mblanpied@usgs.gov

For CSEP Workshop September 6, 2014

Is USGS providing operational forecasts?

- Reports of the Working Group on California Earthquake Probabilities (1988, '90, '99, '03, '08, '13, '14).
- CISN publishes foreshock & aftershock forecasts after M≥5 earthquakes in California.
- STEP 24-hour PSH map of California.
- CEPEC reports to CalEMA (USGS members).
- Ad hoc formal and informal aftershock probabilities after major earthquakes, domestic and abroad.
 - Some based on clustering statistics.
 - Some based on time-dependent renewal models.
 - Some based on Coulomb stress calculations.

Rationale for USGS Operational Forecasts

- USGS bears a responsibility to enhance public safety through effective forecasts, and is often asked for those forecasts.
- Vetted, approved methods exist for mainshock-aftershock sequences in California, where clustering statistics are known.
- We lack vetted methods for calculating dynamic forecasts...
 - outside of California and outside of the USA,`
 - during seismic swarms,
 - in areas subject to induced seismicity,
 - by methods other than earthquake clustering statistics.
- Current methods are not well tested.
- Current information products are not visible, effective, responsive to user needs, or consistent with the existing suite of USGS post-earthquake products.

Goals of DELF Strategic Planning

- To develop and evolve a vision for DELF and the dissemination of related products, as an activity of the EHP & ANSS.
- Define user needs & uses for dynamic hazard & risk forecasts.
- Develop an integrated program that includes R&D and testing of forecast models, design and testing of needed products, and integration of methods into the operations of the ANSS.
- Define the roles of NEPEC, CEPEC, CSEP, SCEC and SAFRR.
- Improve estimates of changes in earthquake probability, hazard, and risk over relevant time periods.
- Extend capability broadly across the nation.
- Explore additional methods (e.g., geodesy, Coulomb stress).
- Define requirements for a structured multi-year effort:
 - Staffing and costs for all elements of effort.
 - Network requirements for seismic (and other?) input data.

Strategic objectives

	Research	Model Development	Model Evaluation	Product Design	Operationalization of Model & Product Dissemination	Assessment of Products
Activities	Conceive, develop and investigate approaches, develop algorithms to optimize OEF forecasts	Make OEF forecasting algorithms testable and usable, possibly with inclusion of real-time data	Test submitted algorithms to evaluate speed, skill and accuracy	Evaluate information products, develop explanatory materials	Use tested algorithms on real-time data, and produce products	Evaluate whether the products communicate the information as desired
Participants	Researchers from USGS, SCEC, academic community	WGCEP, NSHMP, CISN, ANSS network partners	USGS, CSEP, NEPEC, CEPEC	SAFRR, social scientists (inc. external)	CISN, ANSS network partners, NEIC, USGS Office of Communications	SAFRR, external experts

Status of DELF at USGS

- Strategic planning underway.
- Clustering statistics being developed outside of CA.
- Planning PNW coordination guideline document.
- UCERF3 dynamic forecast model under development.
- Powell Center approved and in development.
- SAFRR project helping to define user needs & strategies.
- Several staff attended an international workshop on OEF hosted by INGV, SCEC and RMS.
- Increasing needs in induced seismicity arena.
- Further detail needed on user needs, staffing needs, and network requirements.
- Management decisions needed on level of priority and effort to devote to DELF, and sources of support.
- SESAC review in June, 2014.

Potential levels of effort in DELF

- 1. Status quo.
- 2. Increased capability: vetted methods for forecasts across nation and globe, and beyond mainshockaftershock.
- 3. Operational capabilities with improved network integration, and suite of information products.
- 4. Fully integrated systems for calculation and products within ANSS architecture.

Potential levels of effort in DELF

- 1. Status quo.
- Increased capability: vetted methods for forecasts across nation and globe, and beyond mainshockaftershock.
- 3. Operational capabilities with improved network integration, and suite of information products.
- 4. Fully integrated systems for calculation and products within ANSS architecture.

SESAC approved general direction, suggested that initial 1-2 years focus on defining user needs to define requirements.

Key DELF R&D Goals

- Estimate time-dependent eq probabilities, hazard, and risk over relevant time and space windows.
- Expand suite of viable and tested forecasting models.
- Identify needed improvements in monitoring and analysis.
- Create a pathway for new methods can be coded and evaluated.
- Develop useful forecast products one-time releases, real-time updates, user-customized products, etc.
- Formalize testing of both models and products.

Probability of a damaging event

Proposed messaging strategy

for emergency managers and other key decision-makers

Type of seismic activity

	1. Mainshock- aftershock sequence	2. Swarms	3. Special location (near a major fault)
Level A. Damaging earthquake very likely ≥50%	Mainshock>7 A damaging aftershock is likely	N/A	N/A
Level B. Damaging earthquake quite possible ≥10%	Mainshock≥6.5 Prob of a damaging aftershock >25%	A swarm with ≥2 M≥5 events. Prob of a damaging earthquake >25%	Probability of a M≥7 earthquake is 5-25%
Level C. Damaging earthquake possible 1-10%	Mainshock≥5.5 Prob of a damaging aftershock 1-25%	A swarm with ≥2 M≥4.5 events. Prob of a damaging earthquake 1-25%	Probability of a M≥7 earthquake is 1-5%
Level D. Damaging earthquake unlikely 0.1-1%	Mainshock≥4.5 Prob of a damaging aftershock 0.1-1%	A swarm with ≥2 M≥5 events. Prob of a damaging earthquake 0.1-1%	Probability of a M≥7 earthquake is 0.1-1%

Coordinating Committee for OEF

- Michael Blanpied, Associate Earthquake Program Coordinator
- Lucy Jones, Science Advisor for Risk Reduction
- Andy Michael, Task leader for OEF in the Earthquake Processes, Probabilities and Occurrence Project
- Ned Field, Task leader for OEF in the National Seismic Hazard Maps Project
- Harley Benz, Lead for OEF at the NEIC
- Doug Given, Southern California Seismic Network
- David Oppenheimer, Northern California Seismic Network

OEF Strategic R&D Highlights

• Year 1-2:

- Create implementation plan, staffing requirements, funding model.
- Define data requirements and work needed for initial products.
- Incorporate OEF work as needed into cooperative agreements.
- Complete UCERF3 short-term model; initiate product R&D, testing.
- Begin analysis of clustering statistics outside California.

Year 2-3:

- Evaluate potential for geodetic-transient OEF in the PNW.
- Evaluate methods for OEF during earthquake swarms.

• Year 4-5:

- Evaluate potential of Coulomb-stress-based OEF.
- Evaluate geodetic transients outside PNW.

USGS-hosted discussion

May 2, 2013, Seattle, Washington

- Co-scheduled with meetings of the National Earthquake Program Managers and the WSSPC.
- Two-hour early morning meeting.
- Invited:
 - Earthquake program managers, state geologists, and attending scientists from CA, OR, WA, BC, AK, HI.
 - Representatives of WSSPC and CREW.
 - Members of the NEPEC.
 - Key USGS and PNSN staff in UW.
- 24 participants, plus 9 by phone.

USGS-hosted discussion

May 2, 2013, Seattle, Washington

- Information users endorsed the idea of identifying and improving (where needed) key communication pathways, coordination across Cascadia, and risk messaging.
- Desire for a response coordination plan akin to volcano.
 - CREW volunteered to lead effort to create such a plan.
 - Dovetail with FEMA Cascadia response plan in development.
- Discussed a comm. strategy under development in SoCal.
 - Discrete "levels of concern" determined by scientists.
 - Pre-discussed message forms and pathways to key users.
 - Pre-considered actions by users.
- A brief summary has been prepared.