

Bill Barnhart Gavin Hayes

USGS

Collaborators: Chen Ji, Guangfu Shao (UCSB); Carlos Mendoza (UNAM); Dave Wald, Harley Benz, Steve Hartzell (USGS)

NEIC Realtime Response

Location
Magnitude
Mechanism
PAGER
ShakeMap

No Fault (Median Distance)

Ranbor

Ouangytan

Ouangytan

Deyang
Chengdu
Nanchong

Ziyang
Heyang
Chongding
Longhi

Press Releases

Fast Finite Fault Model Revised Products

60-95 minutes

Revised FFM
Geodetic Observations
Revised Products
Uncertainty Analysis
Research Products

2-3 hours
Days-Months

NEIC Realtime Response

Location
Magnitude
Mechanism
PAGER
ShakeMap
Press Releases

Fast Finite Fault Model Revised Products

60-95 minutes

Revised FFM
Geodetic Observations
Revised Products
Uncertainty Analysis
Research Products

2-3 hours
Days-Months

FFM Trigger (W-phase)

- After completion of W-phase, surface waves at ~90 degrees
- Uses best-fitting CMT nodal planes
- Omits waveforms flagged by W-phase noise criteria

60

FFM Trigger (W-phase)

- After completion of W-phase, surface waves at ~90 degrees
- Uses best-fitting CMT nodal planes
- Omits waveforms flagged by W-phase noise criteria

Body Waves, Turkey EQ 10/23/2011 P INCN 53.4 62.9 $\begin{array}{c} P \\ PALK \\ \hline 45 \end{array}$ 64.3 68.1 P MDJ P KAPI 102 82 86.7 P YAK $\begin{array}{c}
P \\
CHTO \\
\hline
51
\end{array}$ 2173600000000.0 P QIZ P SZ P ENH 77 54 $\frac{P}{KMBO} \frac{189}{40}$ 42.8 87.1 78205000000.0 P 8 KDAK $\frac{P}{FOMA} \frac{176}{63}$

S

20

S

10

60

FFM Inversion I

- Slip Magnitude
 - moment constrained
- Slip Direction (rake)
 - CMT or input assumption constrained
- Rupture Initiation (e.g. Rupture velocity)
 - input assumption constrained
- Rupture Duration
 - moment constrained

FFM Inversion 2: Revised Solution (Maule)

Explore:

- Waveform fits, onsets
- Assumed fault geometry
- Rupture velocity
- Slip & rake constraints
- Data sensitivities

Teleseismic RT FFM Uncertainty

- I) Timing misfit between data & synthetics
 Use analyst picks
 Shift with X-correlation/calibration event
- 2) Fault Geometry

 Fix to known structure (e.g. Slab 1.0, Geodetic location)
- 3) EQ Mislocation Rapid relocations necessary *
- 4) Incorrect Assumptions (e.g., Vr, time, rupture direction)

 Difficult to handle rapidly
- 5) Green's Functions, Velocity Model, etc **Difficult to handle rapidly**

Event Mislocation

FFMs & Slab I.0: Model error

- Model I: Quick FFM. CMT Dip = 15°, initial PDE Depth = 39km.
- Model 2: Adjusted FFM (days after event), made to fit trench geometry (Chen Ji).
- Model 3: Slab I.0 Dip = 18°, Depth = 30km.

Geodetic Source Inversions

Data Sources:

GPS (continuous, high rate) InSAR

Optical Imagery LiDAR

Invert For:

Location/Depth
Orientation
Fault Dimensions
Slip Distribution

Geodetic Source Inversions

Advantages:

Centroid location and rupture dimensions Slip and faulting complexity Expands magnitude range of EQs Inversions are fast Uniform GFs (w/ analytical answer)

Disadvantages:

Time latency
Spatial coverage
Contamination with aseismic
Simplified GFs

Recent Examples

Inversions: 20s-5min

July 2013 NZ (OT +3days)

August 2013 NZ (OT + Iday)

Reducing Location Uncertainty

Revised FFM: Fixed to InSAR Derived Plane

Barnhart et al. revised GFs: Bob Herrmann

Model Resolution-Based Discretization

Assessing Uncertainty (Geodesy)

Time: 30min - 6hours

Bootstrapping (averaging 100+ models)

Gives an indication of model sensitivity with respect to data used in the inversion.

=> Consistency of slip given assumptions of inversion.

2013 Craig, AK Earthquake

2D Geodetic Green's Functions

Static offset from synthetic seismic GFs

GFs: Bob Herrmann

Take Aways

NEIC's goal to produce rapid, accurate source dimensions

- Necessary for ShakeMap, PAGER, etc.
- Models are revised for derivative products and research applications
- Hampered by location, time, 3D structure, model assumptions

Geodetic Observations

- Currently using continuous GPS (2-5 day latency) and InSAR (weeks)
- Moving towards in-house real-time processing (seconds-minutes latency)
- Inversions w/ seismic-derived Green's functions

Future Work

- OpenMP speed up Ji approach from ~40 mins to ~5-10mins
- Better, closer data
- Add SH to Mendoza P-wave inversion technique
- Test multiple GF databases (multiple constructed at the NEIC)
- Joint seismic-geodetic inversions

≥USGS

FFM Inversion 2

P-wave only analysis (lower plot) to obtain first-order slip characteristics soon after an earthquake occurs (within ~10 mins of CMT solution).

Speeds up inversion by constraining the model space:

- Fixed rake
- Fixed rupture velocity
- Fixed moment

Maule FFM

Single-plane teleseismic FFM.

Fits seismic data extremely well (explains 88% of waveform data).

Aftershocks dominantly cluster in regions of lower or transitional slip.

Reasonable fits to horizontal & vertical GPS data.

Maule FFM

Three-plane teleseismic FFM.

Fits seismic data extremely well (explains 89% of waveform data).

Better accounts for downdip changes in slab geometry.

Much better fits to horizontal GPS data.

Maule FFM

Five-plane teleseismic FFM.

Fits seismic data extremely well (explains 90% of waveform data).

Better accounts for down-dip and alongstrike changes in slab geometry.

Much better fits to horizontal & vertical GPS data.

≥USGS

≥USGS

USGS ShakeMap : Tohoku-Oki, Japan MAR 11 2011 05:46:24 AM GMT M 9.0 N38.10 E142.85 Depth: 24.0km ID:201103110546

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	- 1	11-111	IV	V	VI	VII	VIII	1X	X+

Map Version 1 Processed Wed Jul 3, 2013 08:08:56 AM MDT

USGS ShakeMap: Tohoku-Oki, Japan MAR 11 2011 05:46:24 AM GMT M 9.0 N38.10 E142.85 Depth: 24.0km ID:201103110546

USGS ShakeMap : Tohoku-Oki, Japan
MAR 11 2011 05:46:24 AM GMT M 9.0 N38.10 E142.85 Depth: 24.0km ID:20110311054€

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	- 1	II-III	IV	V	VI	VII	VIII	1X	X+

USGS ShakeMap: Tohoku-Oki, Japan

USGS ShakeMap: Tohoku-Oki, Japan MAR 11 2011 05:46:24 AM GMT M 9.0 N38.10 E142.85 Depth: 24.0km ID:201103110546

PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	1X	X+