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Modeling ingredients
‣ Data: 

- Field observations
- Seismology
- Geodesy 
- ...

‣ Theory: 
- Source geometry 
- Earth model 
- ...

Sources of uncertainty
‣ Observational uncertainty: 

- Instrumental noise
- Ambient seismic noise 

‣ Prediction uncertainty: 
- Fault geometry
- Earth model

A posteriori distribution

Project : Toward the next generation of source models including 
realistic statistics of uncertainties

Izmit earthquake (1999)
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Partial derivatives w.r.t. the elastic 
parameters (sensitivity kernel)

Covariance matrix describing uncertainty 
in the Earth model parameters

!! = !! ∙ !!! ∙ !!!! !!" = !! ∙ !! !"!!

-2

2

0

1

-1

-10 -2 0-4-6-8 2 4 6 8 10

D
is

pl
ac

em
en

t, 
m

Distance from the fault / H

-2

2

0

1

-1

-10 -2 0-4-6-8 2 4 6 8 10

D
is

pl
ac

em
en

t, 
m

Distance from the fault / H

Exact theory Stochastic (non-deterministic) theory

A realistic statistical model for the 
prediction uncertainty

The forward problem
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1 Introduction

e = d⇤ � d (1)

e = d
obs

� d (2)

p(d⇤|d) = N (d⇤|d,Cd) (3)

p(m|d
obs

) / p(d
obs

|m) p(m), (4)

where p(d
obs

|m) is the likelihood function:

p(d
obs

|m) /
Z

Dpred

p(d
obs

|d) p(d|m) dd. (5)

p(m|d
obs

) / p(m)

Z

D
p(d

obs

|d) p(d|m) dd (6)

1

‣ posterior distribution:

p(d|m) = N(d | g(   ,m), Cp)p(d|m) = δ(d - g(   ,m))

Calculation of Cp based on the physics of the problem: A perturbation approach
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In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions

(d
pred

). These two classes of uncertainty are discussed bellow.

On one side, we have the observational error that corresponds to the uncertainty induced by more

or less imperfect measurements. When measuring the N -dimentional data vector d, the observed

values d
obs

are associated with an error e 2 RN given by

e = d� d

obs

. (2)

Our interpretation of the observational error e is a single realization of a stochastic variable with

statistics that are described by a probability density p(e). In the following, we will assume that e

has zero mean and a covariance C

d

. Following the Principle of Maximum Entropy (Jaynes 1983,

2003), the least informative PDF which best represents our knowledge of e under these conditions is

a gaussian probability density p(e) = N (0,C
d

). Our statistical model for the data is thus given by

p(d) = N
⇣
d

obs

,C
d

⌘
, (3)

The measurement error covariance C
d

used in this statistical model depends of course on the nature of

data and on the type of used instrument. For instance, a common assumption is to assume independent

observations (i.e., diagonal C
d

), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C

d

because

of the correlation of measurment errors between neighbour data samples (e.g. Yagi & Fukahata 2008;

Duputel et al. 2012).

The second source of error, often overlooked, is the prediction error, i.e., the uncertainty due

to imperfect forward modeling also referred to as epistemic error. For earthquake source modeling

problems, this component corresponds to various contributors including but not limited to, lack of

fidelity in the fault geometry, over simplifications of the mechanical Earth model and approximations

made when calculating the Earth’s response to an applied force. Among these different sources of

uncertainty, the possibility of having an incorrect Earth model is of great interest as it is certainly the

main contribution to forward modeling errors. In this case, the true Earth structure µ
true

is not known

and we work with an approximation eµ. The approximation of the source geometry �
true

by a fault

surface e� can also have profound impact on the predictions. Let ⌦ = [µT ,�T

]

T and g(⌦,m) be the

forward predictions for a source model m with a fault geometry � buried in an Earth model µ. When

modeling the observable parameters d for a given source model m, we obtain a set of predicted values

d

pred

= g(

e
⌦,m) with an error

✏ = d� d

pred

= d� g(

e
⌦,m), (4)

4 Z. Duputel, P. S. Agram and M. Simons

In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions

(d
pred

). These two classes of uncertainty are discussed bellow.

On one side, we have the observational error that corresponds to the uncertainty induced by more

or less imperfect measurements. When measuring the N -dimentional data vector d, the observed

values d
obs

are associated with an error e 2 RN given by

e = d� d

obs

. (2)

Our interpretation of the observational error e is a single realization of a stochastic variable with

statistics that are described by a probability density p(e). In the following, we will assume that e

has zero mean and a covariance C

d

. Following the Principle of Maximum Entropy (Jaynes 1983,

2003), the least informative PDF which best represents our knowledge of e under these conditions is

a gaussian probability density p(e) = N (0,C
d

). Our statistical model for the data is thus given by

p(d) = N
⇣
d

obs

,C
d

⌘
, (3)

The measurement error covariance C
d

used in this statistical model depends of course on the nature of

data and on the type of used instrument. For instance, a common assumption is to assume independent

observations (i.e., diagonal C
d

), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C

d

because

of the correlation of measurment errors between neighbour data samples (e.g. Yagi & Fukahata 2008;

Duputel et al. 2012).

The second source of error, often overlooked, is the prediction error, i.e., the uncertainty due

to imperfect forward modeling also referred to as epistemic error. For earthquake source modeling

problems, this component corresponds to various contributors including but not limited to, lack of

fidelity in the fault geometry, over simplifications of the mechanical Earth model and approximations

made when calculating the Earth’s response to an applied force. Among these different sources of

uncertainty, the possibility of having an incorrect Earth model is of great interest as it is certainly the

main contribution to forward modeling errors. In this case, the true Earth structure µ
true

is not known

and we work with an approximation eµ. The approximation of the source geometry �
true

by a fault

surface e� can also have profound impact on the predictions. Let ⌦ = [µT ,�T

]

T and g(⌦,m) be the

forward predictions for a source model m with a fault geometry � buried in an Earth model µ. When

modeling the observable parameters d for a given source model m, we obtain a set of predicted values

d

pred

= g(

e
⌦,m) with an error

✏ = d� d

pred

= d� g(

e
⌦,m), (4)



a b

c d

Depth / H

D
ep

th
 / 

H
D

ep
th

 / 
H

log(μ  /μ  )1     2

Stochastic 
realizations
Actual 
model

Stochastic 
realizations
Actual 
model

Depth / H
D

ep
th

 / 
H

D
ep

th
 / 

H

log(μ  /μ  )1     2

Blank

Zacharie Duputel

September 2013

1 Introduction

e = d⇤ � d (1)

e = d
obs

� d (2)

p(d⇤|d) = N (d⇤|d,Cd) (3)

p(m|d
obs

) / p(d
obs

|m) p(m), (4)

where p(d
obs

|m) is the likelihood function:

p(d
obs

|m) /
Z

Dpred

p(d
obs

|d) p(d|m) dd. (5)

p(m|d
obs

) / p(m)

Z

D
p(d

obs

|d) p(d|m) dd (6)

p(m|d
obs

) / p(m) N
⇣
d
obs

|g(e⌦,m),C�

⌘

/ p(m)

1p
(2⇡)N |C�|

exp

 
� 1

2

⇣
d
obs

� g(e⌦,m)

⌘T
C�1

�

⇣
d
obs

� g(e⌦,m)

⌘!

C� = C
d

+C
p

(7)

C
p

= Kµ ·Cµ ·KT
µ (8)

1

Covariancea b

c d

Distance from fault / H

D
ist

an
ce

 fr
om

 fa
ul

t /
 H

D
ist

an
ce

 fr
om

 fa
ul

t /
 H

Distance from fault / H

D
isp

la
ce

m
en

t, 
m

D
isp

la
ce

m
en

t, 
m

Distance from fault / H Distance from fault / H

Stochastic predictive 
realizations

Predictions for the
actual model

Predictions for an
homogeneous model

Stochastic predictive 
realizations

Predictions for the
actual model

Predictions for an
homogeneous model

a b

c d

Depth / H

D
ep

th
 / 

H
D

ep
th

 / 
H

log(μ  /μ  )1     2

Stochastic 
realizations
Actual 
model

Stochastic 
realizations
Actual 
model

Depth / H

D
ep

th
 / 

H
D

ep
th

 / 
H

log(μ  /μ  )1     2

Cµ

Cp

Prediction uncertainty due to the 
earth model

1000 stochastic realizations



?

Slip, m

H

D
ep

th
 / 

H

2H

μ1

μ2

μ2/μ1	
  =1.4

0.9H

- Data generated for a layered half-space (dobs)
- 5mm uncorrelated observational noise (→Cd)
- GFs for an homogeneous half-space (→Cp)
- CATMIP bayesian sampler (Minson et al., GJI 2013):

> 1,310,720 metropolis chains running in parallel
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Toy Model 2: Static Finite-fault modeling

Finite shallow-dipping thrust fault
‣ 4km layer over an half-space (μ2/μ1	
  =2.0)
‣ Top of the fault at 6km

45

Posterior mean model, No Cp

Input (target) model

Synthetic displacement data
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Input (target) model

Posterior mean model, including Cp

Diagonal of Cp for vertical disp.

Finite shallow-dipping thrust fault
‣ 4km layer over an half-space (μ2/μ1	
  =2.0)
‣ Top of the fault at 6km

45

Toy Model 2: Static Finite-fault modeling
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Conclusion and Perspectives
Improving source modeling by accounting for 
realistic uncertainties

‣ 2 sources of uncertainty
- Observational error
- Modeling uncertainty

‣ Importance of incorporating realistic covariance components
- More realistic uncertainty estimations
- Improvement of the solution itself

‣ Improving kinematic source models
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(3D velocity model) 
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Somala et al., submitted to GJI
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Comparison of inversion results with and without neglecting Cp
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Measurement
errors

Prediction
errors

Observational error:                     

‣ Measurements dobs : single realization of a stochastic variable d* which can be described by
                                  a probability density p(d*|d) = N(d*|d, Cd)

Prediction uncertainty:                                            where  Ω = [ µT , φT  ]T

‣ Ωtrue is not known and we work with an approximation

‣ The prediction uncertainty: 
‣ scales with the with the magnitude of m
‣ can be described by p(d|m) = N(d | g(   ,m), Cp)

A posteriori distribution:

‣ In the Gaussian case, the solution of the problem is given by:

Earth
model

Source
geometry
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In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions

(d
pred

). These two classes of uncertainty are discussed bellow.

On one side, we have the observational error that corresponds to the uncertainty induced by more

or less imperfect measurements. When measuring the N -dimentional data vector d, the observed

values d
obs

are associated with an error e 2 RN given by

e = d� d

obs

. (2)

Our interpretation of the observational error e is a single realization of a stochastic variable with

statistics that are described by a probability density p(e). In the following, we will assume that e

has zero mean and a covariance C

d

. Following the Principle of Maximum Entropy (Jaynes 1983,

2003), the least informative PDF which best represents our knowledge of e under these conditions is

a gaussian probability density p(e) = N (0,C
d

). Our statistical model for the data is thus given by

p(d) = N
⇣
d

obs

,C
d

⌘
, (3)

The measurement error covariance C
d

used in this statistical model depends of course on the nature of

data and on the type of used instrument. For instance, a common assumption is to assume independent

observations (i.e., diagonal C
d

), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C

d

because

of the correlation of measurment errors between neighbour data samples (e.g. Yagi & Fukahata 2008;

Duputel et al. 2012).

The second source of error, often overlooked, is the prediction error, i.e., the uncertainty due

to imperfect forward modeling also referred to as epistemic error. For earthquake source modeling

problems, this component corresponds to various contributors including but not limited to, lack of

fidelity in the fault geometry, over simplifications of the mechanical Earth model and approximations

made when calculating the Earth’s response to an applied force. Among these different sources of

uncertainty, the possibility of having an incorrect Earth model is of great interest as it is certainly the

main contribution to forward modeling errors. In this case, the true Earth structure µ
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is not known

and we work with an approximation eµ. The approximation of the source geometry �
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surface e� can also have profound impact on the predictions. Let ⌦ = [µT ,�T
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T and g(⌦,m) be the
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modeling the observable parameters d for a given source model m, we obtain a set of predicted values

d

pred

= g(

e
⌦,m) with an error

✏ = d� d

pred

= d� g(

e
⌦,m), (4)

!! = !!!!

Measurements Displacement field

Blank

Zacharie Duputel

September 2013

1 Introduction

e = d⇤ � d (1)

e = d
obs

� d (2)

p(d⇤|d) = N (d⇤|d,Cd) (3)

1

4 Z. Duputel, P. S. Agram and M. Simons

In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions

(d
pred

). These two classes of uncertainty are discussed bellow.

On one side, we have the observational error that corresponds to the uncertainty induced by more

or less imperfect measurements. When measuring the N -dimentional data vector d, the observed

values d
obs

are associated with an error e 2 RN given by

e = d� d

obs

. (2)

Our interpretation of the observational error e is a single realization of a stochastic variable with

statistics that are described by a probability density p(e). In the following, we will assume that e

has zero mean and a covariance C

d

. Following the Principle of Maximum Entropy (Jaynes 1983,

2003), the least informative PDF which best represents our knowledge of e under these conditions is
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d

). Our statistical model for the data is thus given by
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used in this statistical model depends of course on the nature of

data and on the type of used instrument. For instance, a common assumption is to assume independent

observations (i.e., diagonal C
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), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C
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In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions

(d
pred

). These two classes of uncertainty are discussed bellow.

On one side, we have the observational error that corresponds to the uncertainty induced by more

or less imperfect measurements. When measuring the N -dimentional data vector d, the observed

values d
obs

are associated with an error e 2 RN given by

e = d� d
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. (2)

Our interpretation of the observational error e is a single realization of a stochastic variable with

statistics that are described by a probability density p(e). In the following, we will assume that e

has zero mean and a covariance C
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. Following the Principle of Maximum Entropy (Jaynes 1983,

2003), the least informative PDF which best represents our knowledge of e under these conditions is

a gaussian probability density p(e) = N (0,C
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The measurement error covariance C
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used in this statistical model depends of course on the nature of

data and on the type of used instrument. For instance, a common assumption is to assume independent

observations (i.e., diagonal C
d

), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C

d

because

of the correlation of measurment errors between neighbour data samples (e.g. Yagi & Fukahata 2008;

Duputel et al. 2012).

The second source of error, often overlooked, is the prediction error, i.e., the uncertainty due

to imperfect forward modeling also referred to as epistemic error. For earthquake source modeling

problems, this component corresponds to various contributors including but not limited to, lack of

fidelity in the fault geometry, over simplifications of the mechanical Earth model and approximations

made when calculating the Earth’s response to an applied force. Among these different sources of

uncertainty, the possibility of having an incorrect Earth model is of great interest as it is certainly the

main contribution to forward modeling errors. In this case, the true Earth structure µ
true

is not known

and we work with an approximation eµ. The approximation of the source geometry �
true

by a fault

surface e� can also have profound impact on the predictions. Let ⌦ = [µT ,�T

]

T and g(⌦,m) be the

forward predictions for a source model m with a fault geometry � buried in an Earth model µ. When
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Prediction
errors

Observational error:                     

‣ Measurements dobs : single realization of a stochastic variable d* which can be described by
                                  a probability density p(d*|d) = N(d*|d, Cd)

Prediction uncertainty:                                            where  Ω = [ µT , φT  ]T

‣ Ωtrue is not known and we work with an approximation

‣ The prediction uncertainty: 
‣ scales with the with the magnitude of m
‣ can be described by p(d|m) = N(d | g(   ,m), Cp)

A posteriori distribution:

‣ In the Gaussian case, the solution of the problem is given by:

Earth
model

Source
geometry
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In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions

(d
pred

). These two classes of uncertainty are discussed bellow.

On one side, we have the observational error that corresponds to the uncertainty induced by more
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), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C
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because

of the correlation of measurment errors between neighbour data samples (e.g. Yagi & Fukahata 2008;

Duputel et al. 2012).

The second source of error, often overlooked, is the prediction error, i.e., the uncertainty due

to imperfect forward modeling also referred to as epistemic error. For earthquake source modeling

problems, this component corresponds to various contributors including but not limited to, lack of

fidelity in the fault geometry, over simplifications of the mechanical Earth model and approximations

made when calculating the Earth’s response to an applied force. Among these different sources of

uncertainty, the possibility of having an incorrect Earth model is of great interest as it is certainly the

main contribution to forward modeling errors. In this case, the true Earth structure µ
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and we work with an approximation eµ. The approximation of the source geometry �
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In this equation, p(m) is a probability density function (PDF) describing the prior information on m.

The two other terms on the right hand side describe two distinct sources of data uncertainty that can

be identified when considering the inconsistency between observations (d
obs

) and forward predictions
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). These two classes of uncertainty are discussed bellow.
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statistics that are described by a probability density p(e). In the following, we will assume that e
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2003), the least informative PDF which best represents our knowledge of e under these conditions is

a gaussian probability density p(e) = N (0,C
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data and on the type of used instrument. For instance, a common assumption is to assume independent

observations (i.e., diagonal C
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), which is generally quite reasonnable for data like GPS. However, for

observations like InSAR or seismic data, off-diagonal components must be included in C
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because
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to imperfect forward modeling also referred to as epistemic error. For earthquake source modeling

problems, this component corresponds to various contributors including but not limited to, lack of

fidelity in the fault geometry, over simplifications of the mechanical Earth model and approximations

made when calculating the Earth’s response to an applied force. Among these different sources of

uncertainty, the possibility of having an incorrect Earth model is of great interest as it is certainly the

main contribution to forward modeling errors. In this case, the true Earth structure µ
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is not known
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‣ Expansion and densification of observational networks

‣ Improvements in the fidelity of forward modeling capability

Motivation : Complexity/Diversity

Similarity of earthquake rupture processes
‣ First order behavior of the source

‣ Scaling laws

Observational/Methodological Improvements

Ammon et al., 2006, 2008

Lay et al. (2011)

‣ Scaling laws are not always relevant

‣ Energy partitioning during an Earthquake :

➡ Variability in the radiation efficiency (e.g., slow slip)

‣ Rupture propagating over multiple segmented faults

‣ Fault interaction

Diversity/Complexity of the rupture 
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Static inversion (GPS, InSAR,...)

  LP kinematic inversion (Broad-band, HR-GPS,...)

  HF kinematic inversion (Strong-Motion, Broad-Band)
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Combining multiple data-types

Mw=8.3
Mw=8.1

Mw=7.7
Cascading integration of the information 

CATMIP Bayesian sampler (Minson et al., GJI 2013):

Complex geometries :
‣Non-planar faults, 
‣Multi-segmented faults

Using available information :
‣Field observations
‣Seismic reflection
‣Earthquakes mechanism/location

Accounting for the complexity of the fault
Denali earthquake (2002)
Oglesby, D.D. et al. (2004)

Ammon et al., 2006, 2008!"##
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Motivational example: A two-dimensional infinite strike-slip fault:
Assuming an extended fault
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Prediction uncertainty due to the earth model
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Motivational example: A two-dimensional infinite strike-slip fault:
Assuming a limited depth extent
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