

Toward accounting for prediction uncertainty when inferring subsurface fault slip

Zacharie Duputel

Seismo Lab, GPS division, Caltech

Acknowledgements: Mark Simons, Pablo Ampuero, Piyush Agram, Sarah Minson, Luis Rivera, James Beck, Michael Aivasis, Hailiang Zhang.

2013 SCEC ANNUAL MEETING: SOURCE INVERSION VALIDATION September 2013

Project: Toward the next generation of source models including realistic statistics of uncertainties

SIV initiative

Modeling ingredients

- Data:
 - Field observations
 - Seismology
 - Geodesy
 - ..
- ▶ Theory:
 - Source geometry
 - Earth model
 - **-** ..

Sources of uncertainty

- ▶ Observational uncertainty:
 - Instrumental noise
 - Ambient seismic noise
- ▶ Prediction uncertainty:
 - Fault geometry
 - Earth model

A posteriori distribution

Single model

Ensemble of models

A realistic statistical model for the prediction uncertainty

The forward problem

▶ posterior distribution: $p(\mathbf{m}|\mathbf{d}_{obs}) \propto p(\mathbf{m}) \int_{D} p(\mathbf{d}_{obs}|\mathbf{d}) p(\mathbf{d}|\mathbf{m}) d\mathbf{d}$

Exact theory

$$p(\mathbf{d}|\mathbf{m}) = \delta(\mathbf{d} - \mathbf{g}(\widetilde{\Omega},\mathbf{m}))$$

Stochastic (non-deterministic) theory

$$p(\mathbf{d}|\mathbf{m}) = N(\mathbf{d} \mid \mathbf{g}(\widetilde{\Omega}, \mathbf{m}), \mathbf{C}_{p})$$

Calculation of Cp based on the physics of the problem: A perturbation approach

$$\delta \mathbf{p} = \mathbf{K}_{\mu} \cdot \delta \ln \mu$$

$$\delta \mathbf{p} = \mathbf{K}_{\mu} \cdot \delta \ln \mu$$
 $\mathbf{C}_{\mathbf{p}} = \mathbf{K}_{\mu} \cdot \mathbf{C}_{\mu} \cdot \mathbf{K}_{\mu}^{T}$

Partial derivatives w.r.t. the elastic parameters (sensitivity kernel)

Covariance matrix describing uncertainty in the Earth model parameters

$$\mathbf{C}_{\mathrm{p}} = \mathbf{K}_{\mu} \cdot \mathbf{C}_{\mu} \cdot \mathbf{K}_{\mu}^{T}$$

Toy model I: Infinite strike-slip fault

- Data generated for a layered half-space (dobs)
- 5mm uncorrelated observational noise $(\rightarrow C_d)$
- GFs for an homogeneous half-space $(\rightarrow \mathbb{C}_p)$
- CATMIP bayesian sampler (Minson et al., GJI 2013):
 - > 1,310,720 metropolis chains running in parallel

Synthetic Data + Noise shallow fault + Layered half-space

Inversion: Homogeneous half-space

Toy model I: Infinite strike-slip fault

Toy Model 2: Static Finite-fault modeling

Finite shallow-dipping thrust fault

- 4km layer over an half-space ($\mu_2/\mu_1 = 2.0$)
- ▶ Top of the fault at 6km

Toy Model 2: Static Finite-fault modeling

Finite shallow-dipping thrust fault

- 4km layer over an half-space $(\mu_2/\mu_1 = 2.0)$
- ▶ Top of the fault at 6km

Conclusion and Perspectives

Improving source modeling by accounting for realistic uncertainties

- ▶ 2 sources of uncertainty
 - Observational error
 - Modeling uncertainty
- ▶ Importance of incorporating realistic covariance components
 - More realistic uncertainty estimations
 - Improvement of the solution itself
- Improving kinematic source models

References

- Z. Duputel, L. Rivera, Y. Fukahata, H. Kanamori, 2012. Uncertainty estimations for seismic source inversions, Geophys. J. Int., 190, 1243-1256.
- Z. Duputel, P. S. Agram, M. Simons and S. E. Minson, 2013. Accounting for prediction error when inferring subsurface fault slip. Submitted to Geophys. J. Int.
- S.E. Minson, M. Simons, J.L. Beck, 2013. Bayesian inversion for finite fault earthquake source models I theory and algorithm. Geophys. J. Int., 194, 1701-1726
- S.E. Minson, M. Simons, J.L. Beck, F. Ortega, J. Jiang, S.E. Owen, 2013. Bayesian inversion for finite fault earthquake source models II The 2011 great Tohoku-oki, Japan earthquake. Submitted to Geophys. J. Int.
- S. N. Somala, J.-P. Ampuero and N. Lapusta, 2013. Finite-fault source inversion using adjoint methods in 3D heterogeneous medium. Submitted to Geophys. J. Int.

Toy model I: Infinite strike-slip fault

Comparison of inversion results with and without neglecting \mathbf{C}_p

Toy model including a slip step

Toy model including a slip step

Evolution of m at each beta step

Evolution of C_p at each beta step

$\mathbf{C}_{\mathrm{p}} = \mathbf{K}_{\mu} \cdot \mathbf{C}_{\mu} \cdot \mathbf{K}_{\mu}^{T}$

Spatial resolution

Spatial resolution

On the importance of Prediction uncertainty

Observational error:
$$e = d_{obs} - d$$

Measurements

Displacement field

• Measurements \mathbf{d}_{obs} : single realization of a stochastic variable \mathbf{d}^* which can be described by a probability density $p(\mathbf{d}^*|\mathbf{d}) = N(\mathbf{d}^*|\mathbf{d}, \mathbf{C}_d)$

Prediction uncertainty: $\epsilon = \mathbf{d} - \mathbf{d}_{\mathrm{pred}} = \mathbf{d} - \mathbf{g}(\mathbf{\Omega}, \mathbf{m})$, where $\mathbf{\Omega} = [\mathbf{\mu}^T, \mathbf{\phi}^T]^T$

- lacksquare $\Omega_{ ext{true}}$ is not known and we work with an approximation Ω
- ▶ The prediction uncertainty:
 - > scales with the with the magnitude of m
 - rightharpoonup can be described by $p(\mathbf{d}|\mathbf{m}) = N(\mathbf{d} \mid \mathbf{g}(\widetilde{\Omega}, \mathbf{m}), \mathbf{C}_p)$

Source geometry

A posteriori distribution:
$$p(\mathbf{m}|\mathbf{d}_{obs}) \propto p(\mathbf{m}) \int_D p(\mathbf{d}_{obs}|\mathbf{d}) p(\mathbf{d}|\mathbf{m}) d\mathbf{d}$$

Prior information

In the Gaussian case, the solution of the problem is given by:

$$p(\mathbf{m}|\mathbf{d}_{obs}) \propto p(\mathbf{m}) \mathcal{N}\left(\mathbf{d}_{obs} | \mathbf{g}(\widetilde{\Omega}, \mathbf{m}), \mathbf{C}_{\chi}\right)$$

$$\propto p(\mathbf{m}) \frac{1}{\sqrt{(2\pi)^{N} |\mathbf{C}_{\chi}|}} \exp\left(-\frac{1}{2}\left(\mathbf{d}_{obs} - \mathbf{g}(\widetilde{\Omega}, \mathbf{m})\right)^{T} \mathbf{C}_{\chi}^{-1}\left(\mathbf{d}_{obs} - \mathbf{g}(\widetilde{\Omega}, \mathbf{m})\right)\right)$$

$$\mathbf{C}_{\chi} = \sigma^2 \mathbf{I}$$

$$\mathbf{C}_{\chi} = \mathbf{C}_{\mathrm{d}} + \mathbf{C}_{\mathrm{p}}$$

Measurement errors

Prediction errors

On the importance of Prediction uncertainty

Observational error:
$$e = d_{obs} - d$$

Measurements

Displacement field

Measurements \mathbf{d}_{obs} : single realization of a stochastic variable \mathbf{d}^* which can be described by a probability density $p(\mathbf{d}^*|\mathbf{d}) = N(\mathbf{d}^*|\mathbf{d}, \mathbf{C}_{d})$

Prediction uncertainty: $\epsilon = \mathbf{d} - \mathbf{d}_{\text{pred}} = \mathbf{d} - \mathbf{g}(\widetilde{\Omega}, \mathbf{m})$, where $\Omega = [\mathbf{\mu}^T, \mathbf{\phi}^T]^T$

- lacksquare $\Omega_{ ext{true}}$ is not known and we work with an approximation Ω
- ▶ The prediction uncertainty:
 - > scales with the with the magnitude of m
 - can be described by $p(\mathbf{d}|\mathbf{m}) = N(\mathbf{d} \mid \mathbf{g}(\widetilde{\Omega}, \mathbf{m}), \mathbf{C}_p)$

Earth model g

Source geometry

A posteriori distribution:
$$p(\mathbf{m}|\mathbf{d}_{obs}) \propto p(\mathbf{m}) \int_D p(\mathbf{d}_{obs}|\mathbf{d}) p(\mathbf{d}|\mathbf{m}) d\mathbf{d}$$

Prior information

In the Gaussian case, the solution of the problem is given by:

$$p(\mathbf{m}|\mathbf{d}_{obs}) \propto p(\mathbf{m}) \mathcal{N}\left(\mathbf{d}_{obs} \mid \mathbf{g}(\widetilde{\Omega}, \mathbf{m}), \mathbf{C}_{\chi}\right)$$

$$\propto p(\mathbf{m}) \frac{1}{\sqrt{(2\pi)^{N} |\mathbf{C}_{\chi}|}} \exp\left(-\frac{1}{2}\left(\mathbf{d}_{obs} - \mathbf{g}(\widetilde{\Omega}, \mathbf{m})\right)^{T} \mathbf{C}_{\chi}^{-1} \left(\mathbf{d}_{obs} - \mathbf{g}(\widetilde{\Omega}, \mathbf{m})\right)\right)$$

$$\mathbf{C}_{\chi} = \sigma^2 \mathbf{I}$$

$$\mathbf{C}_{\chi} = \mathbf{C}_{\mathrm{d}} + \mathbf{C}_{\mathrm{p}}$$

Measurement errors

Prediction errors

Motivation: Complexity/Diversity

Similarity of earthquake rupture processes

- ▶ First order behavior of the source
- Scaling laws

Observational/Methodological Improvements

- ▶ Expansion and densification of observational networks
- ▶ Improvements in the fidelity of forward modeling capability

Diversity/Complexity of the rupture

- Scaling laws are not always relevant
- ▶ Energy partitioning during an Earthquake :
- → Variability in the radiation efficiency (e.g., slow slip)
- ▶ Rupture propagating over multiple segmented faults
- ▶ Fault interaction

Lay et al. (2011)

Combining multiple data-types

Accounting for the complexity of the fault

Complex geometries:

- ▶ Non-planar faults,
- ▶ Multi-segmented faults

Using available information:

- Field observations
- ▶ Seismic reflection
- ▶ Earthquakes mechanism/location

Cascading integration of the information

CATMIP Bayesian sampler (Minson et al., GJI 2013):

Static inversion (GPS, InSAR,...)

LP kinematic inversion (Broad-band, HR-GPS,...)

HF kinematic inversion (Strong-Motion, Broad-Band)

Motivational example: A two-dimensional infinite strike-slip fault:

Assuming an extended fault

Motivational example: A two-dimensional infinite strike-slip fault:

Assuming an extended fault

Motivational example: A two-dimensional infinite strike-slip fault:

Assuming a limited depth extent

Infinite strike-slip fault:

Assuming a limited depth extent

